Diffractive scattering of hadrons through nuclei

W. Cosyn, M.C. Martínez, J. Ryckebusch

Department of Subatomic and Radiation Physics Ghent University, Belgium

Wroclaw, June 15, 2009

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 1 / 30

The trouble with nuclear reactions ...

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 2 / 30

イロト イポト イヨト イ

Outline

- Relativistic formulation of Glauber multiple-scattering theory
- How to implement short-range correlations in Glauber calculations?
- Nuclear transparencies extracted from ${}^{4}\text{He}(\gamma, p\pi^{-})$ and $A(e, e'\pi^{+})$
- Robustness of the eikonal results for the nuclear transparencies
 - Comparison with semi-classical calculations
 - Consistency with transparencies extracted from A(e, e'p) and A(p, 2p)
 - Second-order eikonal corrections
- Conclusions

Let's do some optics

Black Disk scattering

- $\phi_{out} = \phi_{in} + \phi_{scatt.}$
- $\phi_{\text{scatt.}} = -\phi_{\text{in}}$ in area behind disk
- When kR ≫ 1, the cross section is strongly forward peaked: Fraunhofer diffraction
- Grey disk scattering \rightarrow introduction of a Profile function $\Gamma(\vec{b})$ with a Gaussian form $\phi_{\text{scatt}} = -\Gamma(\vec{b})\phi_{\text{in}}$

Let's do some optics

Black Disk scattering

- $\phi_{out} = \phi_{in} + \phi_{scatt.}$
- $\phi_{\text{scatt.}} = -\phi_{\text{in}}$ in area behind disk
- When kR >> 1, the cross section is strongly forward peaked: Fraunhofer diffraction
- Grey disk scattering \rightarrow introduction of a Profile function $\Gamma(\vec{b})$ with a Gaussian form $\phi_{acett} = -\Gamma(\vec{b})\phi_{ia}$

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

Let's do some optics

Black Disk scattering

- $\phi_{out} = \phi_{in} + \phi_{scatt.}$
- $\phi_{\text{scatt.}} = -\phi_{\text{in}}$ in area behind disk
- When kR >> 1, the cross section is strongly forward peaked: Fraunhofer diffraction
- Grey disk scattering \rightarrow introduction of a Profile function $\Gamma(\vec{b})$ with a Gaussian form $\phi_{\text{scatt.}} = -\Gamma(\vec{b})\phi_{\text{in}}$

< D > < P > < E >

Glauber multiple-scattering theory

 Multiple-scattering theory for the passage of an energetic particle (λ) through a medium with range R valid when

 $\lambda < r_{\rm S} < R$

 $r_{\rm S}$: the interaction range between the particle and the objects in the medium

- First-order eikonal method ; adopts the frozen approximation for the scattering centers and the mean-field approximation!
- Relativistic Multiple-Scattering Glauber approximation (RMSGA) NPA A728 (2003) 226
- The RMSGA provides a common theoretical framework for computing cross sections for

 \bigcirc exclusive reactions like A(e, e'p), A(e, e'pp), A(p, 2p), $A(e, e'p\pi^{-})$

2 guasi-elastic contributions to inclusive responses like A(v, v')

What is the applicable energy range?

 Momentum of the residual nucleus can be neglected relative to its rest mass

$$\Lambda = \frac{1}{p_{N(\pi)}} = \frac{1}{\sqrt{2\omega M_{N(\pi)} + \omega^2}}$$

- πN and N'N interaction ranges are of the order of fm.
- Eikonal approximation can be used down to nucleon kinetic energies of ≈300 MeV. Corresponds to pion energies of about 750 MeV.

Diffractive scattering of hadrons

Relativistic Multiple-Scattering Glauber Approximation

- Model adopts the mean-field approximation with bound-state wave functions from the $\sigma \omega$ model (Serot-Walecka).
- Intranuclear attenuation on the impinging or escaping hadron *i* is implemented by means of a

DIRAC-GLAUBER PHASE OPERATOR $\mathcal{G}(\vec{b}, z)$ (SCALAR)

$$\widehat{\mathcal{G}}\left(\vec{r},\vec{r}_{2},\vec{r}_{3},\ldots\vec{r}_{A}\right)\equiv\prod_{j=2}^{A}\left[1-\Gamma_{iN}\left(\vec{b}-\vec{b}_{j}\right)\theta\left(z-z_{j}\right)\right]$$

Product extends over all spectator nucleons!

• Profile function reflects diffractive nature of πN and N'N

$$\Gamma_{iN}(\vec{b}) = \frac{\sigma_{iN}^{\text{tot}}(1 - i\epsilon_{iN})}{4\pi\beta_{iN}^2} \exp{-\frac{\vec{b}^2}{2\beta_{iN}^2}} \text{ (with, } i = \pi \text{ or, } N') \text{ .}$$

 σ_{iN}^{tot} (total cross section), β_{iN} (slope parameter) and ϵ_{iN} (ratio of real to imaginary part of the amplitude). Obtained from $N'N \longrightarrow N'N$ and $\pi N \longrightarrow \pi N$ data.

- $\sigma_{\pi N}^{\text{tot}}$, $\epsilon_{\pi N}$ and $\beta_{\pi N}$ depend on ejectile's momentum: fits to πN scattering data (PDG and SAID)
- The slope parameter provides a consistency check!

Profile Function for Elastic πN scattering

• $\sigma_{\pi N}^{\text{tot}}$, $\epsilon_{\pi N}$ and $\beta_{\pi N}$ depend on ejectile's momentum: fits to πN scattering data (PDG and SAID)

 The slope parameter provides a consistency check!

Profile Function for Elastic πN scattering

• $\sigma_{\pi N}^{\text{tot}}$, $\epsilon_{\pi N}$ and $\beta_{\pi N}$ depend on ejectile's momentum: fits to πN scattering data (PDG and SAID)

 The slope parameter provides a consistency check!

Profile Function for Elastic πN scattering

- $\sigma_{\pi N}^{\text{tot}}$, $\epsilon_{\pi N}$ and $\beta_{\pi N}$ depend on ejectile's momentum: fits to πN scattering data (PDG and SAID)
- The slope parameter provides a consistency check!

$$\mathcal{G}(\vec{b}, z) = \prod_{\alpha_{occ} \neq \alpha} \left[1 - \int d\vec{r}' \left| \phi_{\alpha_{occ}} \left(\vec{r}' \right) \right|^2 \left[\theta \left(z' - z \right) \Gamma \left(\vec{b}' - \vec{b} \right) \right] \right]$$

The Dirac plane wave for an escaping proton/pion gets modulated by (z' along the asymptotic direction of the ejectile)

$$\begin{split} \mathcal{G}(\vec{b},z) &= 1 - \prod_{\alpha_{occ} \neq \alpha} \left\{ \frac{\sigma_{pN}^{tot}(1-i\varepsilon_{pN})}{4\pi\beta_{pN}^2} \int_0^\infty b'db' \int_{-\infty}^{+\infty} dz' \theta(z'-z) \\ &\left(\left[\frac{G_{n\kappa}\left(r'(b',z')\right)}{r'(b',z')} \mathcal{Y}_{\kappa m}(\Omega',\sigma) \right]^2 + \left[\frac{F_{n\kappa}\left(r'(b',z')\right)}{r'(b',z')} \mathcal{Y}_{\kappa m}(\Omega',\sigma) \right]^2 \right) \\ &\times \exp\left[- \frac{(b-b')^2}{2\beta_{pN}^2} \right] \int_0^{2\pi} d\varphi_{b'} \exp\left[\frac{-bb'}{\beta_{pN}^2} 2\sin^2\left(\frac{\varphi_b - \varphi_{b'}}{2}\right) \right] \right\} \,. \end{split}$$

Each target nucleon (scattering center) represented by its own relativistic wave function (upper and lower component)!

 The independent-particle picture is essential when deriving the Dirac Glauber phase operator

$$\mathcal{G}(ec{b}, z) = \prod_{lpha_{occ}
eq lpha} \left[1 - \int dec{r}' \left| \phi_{lpha_{occ}} \left(ec{r}'
ight) \right|^2 \left[heta \left(z' - z
ight) \Gamma_{pN} \left(ec{b}' - ec{b}
ight)
ight]
ight]$$

 The computational cost of the calculations can be considerably (10³!) reduced by making the following assumption:

$$\left| \phi_{\alpha_{occ}}\left(\vec{r}'
ight) \right|^2 \longrightarrow rac{
ho_{\mathcal{A}=1}^{\left[1
ight]}\left(\vec{r}'
ight) }{\mathcal{A}-1}$$

and assuming that $\rho_{A-1}^{[1]}(\vec{r}')$ are slowly varying functions of \vec{b}' . Then,

$$\mathcal{G}(\vec{b}, z) pprox \exp{-rac{\sigma_{
holdsymbol{
holdsymbol{matrix}}^{tot} \left(1 - \epsilon_{
holdsymbol{
holdsymbol{matrix}}
ight)}{2}} \int_{z}^{+\infty} dz'
ho_{A-1}^{[1]} \left(\vec{b}', z'\right)$$

TURNS OUT TO BE A GOOD APPROXIMATION

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 10 / 30

- In standard Glauber: effect of intranuclear attenuations is computed as if the density remains unaffected by the presence of a nucleon at $\vec{r} = (\vec{b}, z)$
- One can correct for this bij making the following substitution

$$ho_{A-1}^{[1]}\left(ec{b}', z'
ight)
ightarrow rac{A-1}{A-2} rac{
ho_{A-1}^{[2]}\left(ec{r}', ec{r}
ight)}{
ho_{A-1}\left(ec{r}
ight)}$$

Conditional one-body density: the density of the residual A - 1 nucleus given that there is already a nucleon at position \vec{r} .

 transverse attenuation length for pions (and nucleons) is of the order of 0.75 fm: attenuations will be mainly affected by the short-range structure of the transverse density in the residual nucleus

イロト イポト イヨト イヨト

$$\rho_{A-1}^{\left[2\right]}\left(\vec{r}',\vec{r}\right) = \frac{A-2}{A-1} \gamma\left(\vec{r}\right) \rho_{A-1}^{\left[1\right]}\left(\vec{r}\right) \gamma\left(\vec{r}'\right) \rho_{A-1}^{\left[1\right]}\left(\vec{r}'\right) g\left(\vec{r},\vec{r}'\right)$$

 The γ-functions are introduced to impose the correct normalisation and obey the following integral equation

$$\gamma\left(\vec{r}_{1}\right)\int d\vec{r}_{2}\rho_{A}\left(\vec{r}_{2}\right)g\left(\vec{r}_{1},\vec{r}_{2}\right)\gamma\left(\vec{r}_{2}\right)=A.$$

 The introduction of the γ-functions is a very efficient alternative for cluster-expansion methods!

```
W.Cosyn, M.C. Martínez, J.R., Phys. Rev. C77 (2008)
034602
```

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 12 / 30

(D) (A) (A) (A) (A)

- Choice for the central correlation function g(r)?
- The central correlation function has a universal character!
- ¹⁶O(e, e'pp) and ¹²C(e, e'pp) at MAMI and NIKHEF have provided constraints on g(r) !!
- The nuclear g(r) looks like the correlation function for a classical liquid! ((nucleus as a Van der Waals liquid))

4 (1) > 4

ヨトィヨ

- Choice for the central correlation function g(r)?
- The central correlation function has a universal character!
- ¹⁶O(e, e'pp) and ¹²C(e, e'pp) at MAMI and NIKHEF have provided constraints on g(r) !!
- The nuclear g(r) looks like the correlation function for a classical liquid! ((nucleus as a Van der Waals liquid))

4 (1) > 4

ランマラン

Measurements: MAMI Theory: Ghent DWIA

- Choice for the central correlation function g(r) ?
- The central correlation function has a universal character!
- ¹⁶O(e, e'pp) and ¹²C(e, e'pp) at MAMI and NIKHEF have provided constraints on g(r) !!
- The nuclear g(r) looks like the correlation function for a classical liquid! ((nucleus as a Van der Waals liquid))

Typical correlation function in a Ar liquid

- Choice for the central correlation function g(r) ?
- The central correlation function has a universal character!
- ¹⁶O(e, e'pp) and ¹²C(e, e'pp) at MAMI and NIKHEF have provided constraints on g(r) !!
- The nuclear g(r) looks like the correlation function for a classical liquid! ((nucleus as a Van der Waals liquid))

Densities in Glauber calculations (⁴He case)

A nucleon or pion is created in the center of ⁴He: how does the nuclear density looks like for this hadron?

Densities in Glauber calculations (⁴He case)

A nucleon or pion is created in the center of ⁴He: how does the nuclear density looks like for this hadron?

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 14 / 30

Exploring the crossover

When and how does it occur?

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 15 / 30

∃ → < ∃ →</p>

4 (1) > 4

Exploring the crossover

- Look for phenomena predicted in QCD that introduce deviations from traditional nuclear physics observations
- One of these phenomena is color transparency

< 67 >

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 15 / 30

Color transparency (CT)

- QCD predicts the formations of small-sized hadrons (PLC) in reactions with a high energy transfer Q. The struck quark can only interact with quarks within a distance ~ 1/Q before hadronization occurs.
- The small-sized hadron appears colorless to the medium and hence experiences reduced interactions.
- The PLC will evolve to the normal hadron state as the small-sized configuration is not an eigenstate of the Hamiltonian.

Motivation (I)

- emergence of the concepts of "nuclear physics" (baryons and mesons) out of QCD (quarks and gluons) remains elusive
- the nuclear transparency as a function of a tunable scale parameter (t or Q^2) is a good quantity to study the crossover between the two regimes
 - one cannot exclude that novel structures of hadronic matter emerge!
 - crossover is a necessary condition for factorization to apply (extraction of GPDs from data)

Nuclear transparency: effect of nuclear attenuations on escaping hadrons

 $T(A, Q^2) = \frac{\text{cross section on a target nucleus}}{A \times \text{cross section on a free nucleon}}$

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 17/30

・ロト ・同ト ・ヨト ・ヨト

Motivation (II)

- interpretation of the transparency experiments requires the availability of reliable and advanced traditional nuclear-physics calculations to compare the data with
- deviations between those model calculations and the measurements point towards the onset of QCD phenomena (like color transparency)

Calculating attenuations in $A(\gamma, p\pi^{-})$

Separate the cross section in a part describing the fundamental pion production process and a part describing the final state interactions of the pion and proton

Approximations

- Pion production operator in the impulse approximation
- Neglect negative energy contributions of the bound nucleon

Distorted momentum distribution $\rho_{\rm D}(\vec{p}_m)$

$$\left(\frac{d\sigma}{dE_{\pi}d\Omega_{\pi}d\Omega_{N}}\right)_{\rm D} \approx \frac{M_{A-1}p_{\pi}p_{N}\left(s-\left(m_{N}^{*}\right)^{2}\right)^{2}}{4\pi m_{N}^{*}qM_{A}}f_{\rm rec}^{-1}\rho_{\rm D}(\vec{p}_{m})\frac{d\sigma^{\gamma\pi}}{d\mid t\mid}$$

Calculating attenuations in $A(\gamma, p\pi^{-})$

Separate the cross section in a part describing the fundamental pion production process and a part describing the final state interactions of the pion and proton

Approximations

- Pion production operator in the impulse approximation
- Neglect negative energy contributions of the bound nucleon

Distorted momentum distribution $\rho_{\rm D}(\vec{p}_m)$

$$\left(\frac{d\sigma}{dE_{\pi}d\Omega_{\pi}d\Omega_{N}}\right)_{\rm D} \approx \frac{M_{A-1}p_{\pi}p_{N}\left(s-\left(m_{N}^{*}\right)^{2}\right)^{2}}{4\pi m_{N}^{*}qM_{A}}f_{\rm rec}^{-1}\rho_{\rm D}(\vec{p}_{m})\frac{d\sigma^{\gamma\pi}}{d\mid t\mid}$$

Calculating attenuations in $A(\gamma, p\pi^{-})$

Separate the cross section in a part describing the fundamental pion production process and a part describing the final state interactions of the pion and proton

Approximations

- Pion production operator in the impulse approximation
- Neglect negative energy contributions of the bound nucleon

Distorted momentum distribution $\rho_{\rm D}(\vec{p}_m)$

$$\left(\frac{d\sigma}{dE_{\pi}d\Omega_{\pi}d\Omega_{N}}\right)_{\mathsf{D}} \approx \frac{M_{\mathsf{A}-1}\rho_{\pi}\rho_{N}\left(s-\left(m_{N}^{*}\right)^{2}\right)^{2}}{4\pi m_{N}^{*}qM_{\mathsf{A}}}f_{\mathsf{rec}}^{-1}\rho_{\mathsf{D}}(\vec{\rho}_{m})\frac{d\sigma^{\gamma\pi}}{d\mid t\mid}$$

Color Transparency (I)

- related to the quantum mechanical evolution of wave packets (the small-size configurations which are selected by the probe are no stationary states of the QCD Hamiltonian and evolve with time)
- during expansion: wave packet is subject to reduced attenuations
- Quantum diffusion parameterization

$$\sigma_{iN}^{\text{eff}}(z) = \sigma_{iN}^{\text{tot}} \left\{ \left[\frac{z}{l_h} + \frac{\langle n^2 k_t^2 \rangle}{\mathcal{H}} \left(1 - \frac{z}{l_h} \right) \theta(l_h - z) \right] + \theta(z - l_h) \right\} \ i = \pi \quad \text{or,}$$

the hadronic formation length *l_h* is related to the mass separation between the different hadronic states and can be estimated from Regge trajectories

$$l_h$$
 [fm] = $\frac{2p_h}{(\Delta m)^2} \approx 0.5p_h$ [GeV]

k_t ≈ 0.35 GeV educated estimate for the average transverse momentum of a constituent quark in a hadron

Color Transparency (II)

For a given p_h and hard scale parameter \mathcal{H} : Pion cross section is more strongly reduced and formation length is longer

both the SRC and CT will affect the "effective" density at short transverse distances - can one discriminate between these effects?

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 21 / 30

⁴He(γ , $p\pi^{-}$) transparencies

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 22 / 30

$A(e, e'\pi^+)$ transparencies: Q² dependence

 $A(e, e'\pi^+)$ data from JLab ((B. Clasie *et al.*, PRL99 (2007) 242502)

- comparison with theoretical predictions rather essential for the interpretation of transparency measurements
- how robust are these theoretical predictions?
 - comparison with other theories?
 - consistent analysis of transparencies extracted from various reactions (A(e, e'p) and A(p, 2p))
 - ▶ role of higher-order eikonal corrections? (A(e, e'p)) as a test case)

$A(e, e'\pi^+)$ transparencies: A dependence

- hatched band: extracted from πA data
- Red lines: semiclassical Glauber calculations of Larson, Miller, Strikman (PRC74 (2006) 018201) (dashed line includes CT)
- Blue dotted line: RMSGA with CT and SRC

Jan Ryckebusch (UGent)

$A(e, e'\pi^+)$ transparencies: A dependence

• hatched band: extracted from πA data

- Red lines: semiclassical Glauber calculations of Larson, Miller, Strikman (PRC74 (2006) 018201) (dashed line includes CT)
- Blue dotted line: RMSGA with CT and SRC

The RMSGA and semi-classical transparencies are similar!!

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

The nuclear transparency from ${}^{12}C(p, 2p)$ (PLBB644 (2007) 304)

Parameterization of the CT effects compatible with pion production results!

The nuclear transparency from ${}^{12}C(p, 2p)$ (PLBB644 (2007) 304)

Parameterization of the CT effects compatible with pion production results!

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 26 / 30

The nuclear transparency from A(e, e'p)

- Calculations tend to underestimate the measured proton transparencies
- In the region of overlap: RMSGA and RDWIA predictions are not dramatically different !!
- Data from MIT, JLAB and SLAC
- CT effects are very small for $Q^2 \le 10 \text{ GeV}^2$

- The eikonal approximation has a long and successful history
- One can compute so-called second-order eikonal corrections
- SOROMEA: Second Order Relativistic Optical Model Eikonal Approximation for the exclusive A(e, e'p)
- Unfactorized: not an issue in transparency calculations!
- Unfactorized: observables like "left-right" asymmetries can be computed

イロト イポト イヨト イヨト

э

- The eikonal approximation has a long and successful history
- One can compute so-called second-order eikonal corrections
- SOROMEA: Second Order Relativistic Optical Model Eikonal Approximation for the exclusive A(e, e'p)
- Unfactorized: not an issue in transparency calculations!
- Unfactorized: observables like "left-right" asymmetries can be computed

イロト イポト イヨト イヨト

3

- The eikonal approximation has a long and successful history
- One can compute so-called second-order eikonal corrections
- SOROMEA: Second Order Relativistic Optical Model Eikonal Approximation for the exclusive A(e, e'p)
- Unfactorized: not an issue in transparency calculations!
- Unfactorized: observables like "left-right" asymmetries can be computed

э

- The eikonal approximation has a long and successful history
- One can compute so-called second-order eikonal corrections
- SOROMEA: Second Order Relativistic Optical Model Eikonal Approximation for the exclusive A(e, e'p)
- Unfactorized: not an issue in transparency calculations!

 Unfactorized: observables like
 "left-right" asymmetries can be computed a symmetries is a page

Jan Ryckebusch (UGent)

Diffractive scattering of hadrons

June 15, 2009 28 / 30

- The eikonal approximation has a long and successful history
- One can compute so-called second-order eikonal corrections
- SOROMEA: Second Order Relativistic Optical Model Eikonal Approximation for the exclusive A(e, e'p)
- Unfactorized: not an issue in transparency calculations!
- Unfactorized: observables like "left-right" asymmetries can be computed

- recent times have seen a lot of theoretical activity in eikonal approaches to nuclear attenuation effects in exclusive $\gamma^{(*)}A \rightarrow B + \text{hadrons}$ (*Miller, Sargsian, Ciofi degli Atti, ...*)
- eikonal approach has enjoyed many successes in RIB physics (*Tostevin, Bertulani, ...*)
- RMSGA: "flexible" eikonal framework which can be used in combination with relativistic bound-state and continuum wave functions
- importance of implementing SRC in transparency calculations!
- the central short-range correlations make the nucleus more transparent for emission of fast pions and nucleons

くロ とくぼ とくほ とく ほうし

Summary and outlook (II)

- A(γ, π⁻p): Nuclear transparencies from relativistic Glauber framework are larger than those from semi-classical models.
- CT and SRC exhibit a different "hard-scale" and A dependence separation between hadronic and non-hadronic effects remains possible!
- the A(e, e'π⁺) transparency results show deviations from traditional nuclear physics expectations AND are compatible with the educated estimates of how CT should be like !
- Robustness of the Glauber approximation:
 - Semiclassical and RMSGA calculations provide similar pion transparencies
 - Second-order eikonal corrections are small (even at low energies)
- JLAB at 12 GeV and JPARC (GSI?) ((p, 2p)) will provide the data to explore the crossover regime and establish the CT effect on a firm footing

Jan Ryckebusch (UGent)

イロト イポト イヨト イヨト