First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section

Teppei Katori for the MiniBooNE collaboration Massachusetts Institute of Technology Wroclaw neutrino group seminar, Wroclaw, November 30, 09

11/30/2009

Teppei Katori, MIT

First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section outline 0. NuInt09 summary 1. Booster neutrino beamline 2. MiniBooNE detector **3. CCQE events in MiniBooNE** 4. CC1 π background constraint 5. CCQE M_A^{eff} - κ shape-only fit 6. CCQE absolute cross section 7. Conclusion

0. NuInt09 summary

NuInt09, May18-22, 2009, Sitges, Spain

This talk is based on the discussions and results presented in NuInt09.

NuInt09 MiniBooNE results

In NuInt09, MiniBooNE had 6 talks and 2 posters

- 1. charged current quasielastic (CCQE) cross section measurement by Teppei Katori
- 2. neutral current elastic (NCE) cross section measurement by Denis Perevalov
- 3. neutral current π^{o} production (NC π^{o}) cross section measurement (v and anti-v) by Colin Anderson
- 4. charged current single pion production (CC π^+) cross section measurement by Mike Wilking
- 5. charged current single π^{o} production (CC π^{o}) measurement by Bob Nelson
- 6. improved CC1 π^+ simulation in NUANCE generator by Jarek Novak
- 7. $CC\pi^+/CCQE$ cross section ratio measurement by Steve Linden
- 8. anti-vCCQE measurement
 - by Joe Grange

by Teppei Katori

0-1. CCQE cross section in MiniBooNE

Flux-averaged double differential cross section

I will discuss the great detail in this talk later. The main conclusion was,

- 1. the first measurement of double differential cross section
- 2. ~30% higher absolute cross section from the recent NOMAD result

0-2. NCE cross section in MiniBooNE

$$\nu_{\mu} + p \rightarrow \nu_{\mu} + p$$
$$\nu_{\mu} + n \rightarrow \nu_{\mu} + n$$

NCE measurement and Δs

By definition, longitudinally polarized quark functions are normalized with axial vector nucleon matrix element.

$$\int_{0}^{1} d\mathbf{x} < \mathsf{N} | \, \overline{\mathsf{u}} \gamma_{\mu} \gamma_{5} \mathsf{u} - \overline{\mathsf{d}} \gamma_{\mu} \gamma_{5} \mathsf{d} - \overline{\mathsf{s}} \gamma_{\mu} \gamma_{5} \mathsf{s} | \, \mathsf{N} > = < \mathsf{N} | - \mathsf{G}_{\mathsf{A}}(\mathsf{Q}^{2}) \gamma_{\mu} \gamma_{5} \tau_{3} + \mathsf{G}_{\mathsf{A}}^{\mathsf{s}}(\mathsf{Q}^{2}) \gamma_{\mu} \gamma_{5} | \, \mathsf{N} > = < \mathsf{N} | - \mathsf{G}_{\mathsf{A}}(\mathsf{Q}^{2}) \gamma_{\mu} \gamma_{5} \tau_{3} + \mathsf{G}_{\mathsf{A}}^{\mathsf{s}}(\mathsf{Q}^{2}) \gamma_{\mu} \gamma_{5} | \, \mathsf{N} > = < \mathsf{N} | - \mathsf{G}_{\mathsf{A}}(\mathsf{Q}^{2}) \gamma_{\mu} \gamma_{5} \tau_{3} + \mathsf{G}_{\mathsf{A}}^{\mathsf{s}}(\mathsf{Q}^{2}) \gamma_{\mu} \gamma_{5} | \, \mathsf{N} > = < \mathsf{N} | - \mathsf{G}_{\mathsf{A}}(\mathsf{Q}^{2}) \gamma_{\mu} \gamma_{5} \tau_{3} + \mathsf{G}_{\mathsf{A}}^{\mathsf{s}}(\mathsf{Q}^{2}) \gamma_{\mu} \gamma_{5} | \, \mathsf{N} > = < \mathsf{N} | \mathsf{M} | \mathsf{M}$$

Then, strange quark spin contribution in the nucleon (called Δs) gives simple connection of DIS and elastic scattering world.

$$\int_0^1 dx \Delta s(x) \equiv \Delta s \equiv G_A^s(Q^2 = 0)$$

Since Δs is the Q²=0 limit of isoscalar axial vector form factor, it can be accessed by NCE scattering measurement.

However, measured Δs in HERMES semi-inclusive DIS measurement (~0) and BNLE734 neutrino NCE measurement (~0.15) don't agree within their errors (so there is a great interest for the precise NCE measurement!).

11/30/2009

Teppei Katori, MIT

0-2. NCE cross section in MiniBooNE

Proton fitter

NCE proton track energy/position/direction are measured by minimizing the charge and time likelihood made from each PMT response. the proton fitter based on the proton scintillation and Cerenkov light profile. This fitter is especially powerful when proton exceeds the Cerenkov threshold ($\Delta x \sim 0.7m$, $\Delta \theta \sim 20^{\circ}$, $\Delta KE \sim 25\%$).

11/30/2009

0-2. NCE cross section in MiniBooNE

Flux-averaged NCE p+n differential cross section

Measured cross section agree with BNLE734.

Intrinsic background prediction is also provided.

NCE data also prefer a controversial high M_A value.

11/30/2009

0-2. NCE cross section in MiniBooNE

NCE proton exclusive measurement

To measure Δs we need a exclusive measurement of NCE proton scattering. The separation is only possible at high energy (above proton Cerenkov threshold).

This is an ongoing analysis.

Reconstructed proton angle

11/30/2009

Teppei Katori, MIT

by Colin Anderson

0-3. NC π^{o} cross section in MiniBooNE

$$\nu_{\mu} + N \rightarrow \nu_{\mu} + \Delta^{\circ} \rightarrow \nu_{\mu} + N + \pi^{\circ}$$
$$\nu_{\mu} + A \rightarrow \nu_{\mu} + A + \pi^{\circ}$$

MiniBooNE collaboration, arXiv:0911.2063

$NC\pi^{o}$ event definition

All pion production channel need to be defined from it's final state. NC π° event is defined as NC interaction resulting with one π° exiting nuclei and no other mesons. Clearly,

- This definition includes π^{o} production by final state interactions (FSIs).
- This definition excludes NC π° interaction when π° is lost by FSIs.

This is the necessary definition for the theorists to understand final state interactions (FSIs) without biases.

Measurement is done both v and anti-v mode.

	Events Passing Cuts	Purity	Efficiency
Neutrino Mode	21542 w/ 6.461E20 POT Data/MC = 1.10	73%	36%
Antineutrino Mode	2305 w/ 3.386E20 POT Data/MC = 0.94	58%	36%

by Colin Anderson

0-3. NC π° cross section in MiniBooNE

$NC\pi^{o}$ differential cross section

Unfolding is carefully studied. Different techniques (Tikhonov regularization and iterative Bayesian method) are used depending on the biases of unfolding. Inverse response matrix method is never used.

This is the first measurement of $NC\pi^{o}$ production differential cross section.

by Colin Anderson

0-3. NC π^{o} cross section in MiniBooNE

$NC\pi^{o}$ coherent production models

Forward angular distribution is sensitive with coherent π^o production.

The measured rates are compared with several theoretical models.

Hernandez et al., arXiv:0903.5285

Alvarez-Ruso et al., PRC76(2007)068501

0-4. $CC\pi^+$ cross section in MiniBooNE $\nu_{\mu} + p(n) \rightarrow \mu + \Delta^{+(+)} \rightarrow \mu + p(n) + \pi^+$ $\nu_{\mu} + A \rightarrow \mu + A + \pi^+$

$CC\pi^+$ event as a background of CCQE events

 $CC\pi^+$ event without pion is the intrinsic background for CCQE in Super-K. Therefore we need a good understanding of $CC\pi^+$ kinematics comparing with CCQE for a better energy reconstruction (= better oscillation measurement).

mis-reconstruction of neutrino energy by misunderstanding of $CC\pi^+$ events spoils v_{μ} disappearance signals

by Mike Wilking

11/30/2009

0-4. $CC\pi^+$ cross section in MiniBooNE

$CC\pi^{\scriptscriptstyle +}$ kink fitter

 $CC\pi^+$ kink fitter is based on the nature that pion has a hadronic interaction whereas muon doesn't have. Then, pion occasionally shows "kink" in the middle of its track. This kink fitter improves pion energy measurement.

by Mike Wilking

0-4. $CC\pi^+$ cross section in MiniBooNE

$CC\pi^{\scriptscriptstyle +}$ cross section

After the cut, there is ~48,000 events with 90% purity, and correct pion/muon identification rate is 88%.

Following 8 cross sections are measured. $\sigma(E_v)$: total cross section with function of E_v $d\sigma/dQ^2$: differential cross section of Q^2 $d^2\sigma/dT_{\mu}/dcos\theta_{\mu}$: double differential cross section of muon kinematics $d^2\sigma/dT_{\pi}/dcos\theta_{\pi}$: double differential cross section of pion kinematics

0-5. CCπ^o measurement in MiniBooNE

$$\nu_{\mu} + n \rightarrow \mu + \Delta^{+} \rightarrow \mu + p + \pi^{\circ}$$

$CC\pi^{o}$ event

There is no coherent contribution.

There are only ~5% total and swamped by other CC channels.

$CC\pi^{o}$ fitter (3 tracks fitter)

Probably the most complicated fitter. First primary Cerenkov ring is found, then fitter searches 2 additional rings, then the right combination (1 muon, 2 gammas) is found from 3 possible particle combinations.

78% time muon is correctly found. Muon angle shows suppression at high $\cos\theta_{\mu}$.

by Bob Nelson

16

0-5. CCπ^o measurement in MiniBooNE

Kinematics

invariant mass of 2 gammas show π° mass peak. Muon ID rate is >80% at π° mass peak. Reconstructed Q² shows suppression at the first bin.

The differential cross sections are coming soon.

0-6. Improved $CC\pi^+$ simulation

Improved $CC\pi^+$ prediction

All recent improvements are integrated in MiniBooNE simulation, including,

- muon mass correction,
- state-of-arts from factors

by Jarek Novak

0-7. CC π^+ /CCQE cross section ratio

MiniBooNE collaboration, PRL103(2009)081801

by Steve Linden

picture wanted

$CC\pi^+/CCQE$ cross section ratio measurement

There is a complication for systematic error analysis, because CCQE is the background in $CC\pi^+$ sample, and $CC\pi^+$ is the background in CCQE sample.

Process	Fraction of $CC1\pi^+$ - like events (%)	Fraction of CCQE- like events (%)
$CC1\pi^+$ Resonant	86.0	9.4
$CC1\pi^+$ Coherent	6.3	0.2
CCQE	2.4	85.4
Multi-pion	2.5	0.02
$CC1\pi^0$	1.0	2.5
DIS	0.2	< 0.01
Other	1.6	2.5

 $\begin{array}{l} \mathsf{CC}\pi^+/\mathsf{CCQE} \text{ cross section ratio formula} \\ \frac{\sigma_{1\pi^+,i}}{\sigma_{QE,i}} = \frac{\epsilon_{QE,i}*\sum_j U_{1\pi^+,ij}*f_{1\pi^+,j}*N_{1\pi^+-cuts,j}}{\epsilon_{1\pi^+,i}*\sum_j U_{QE,ij}*f_{QE,j}*N_{QE-cuts,j}} \end{array}$

by Steve Linden

0-7. $CC\pi^+/CCQE$ cross section ratio

MiniBooNE collaboration, PRL103(2009)081801

$CC\pi^+/CCQE$ cross section ratio measurement

There is a complication for systematic error analysis, because CCQE is the background in $CC\pi^+$ sample, and $CC\pi^+$ is the background in CCQE sample.

As is same with other pion production analysis, we emphasize that the FSIs are not corrected. We corrected it only when we want to compare with other experimental data.

0-8. anti-vCCQE measurement

$$\overline{\nu}_{\mu} + p \rightarrow \mu^{+} + n$$

anti-vCCQE measurement is more complicated!

Comparing with vCCQE, anti-vCCQE measurement at least has following difficulties,

1. higher wrong sign background

2. hydrogen scattering

3. no data-based CC π background tuning is possible (nuclear π - capture)

After cuts, ~27,000 events with 54% purity.

component	anti-v mode	v mode
right sign CCQE	54%	77%
wrong sign CCQE	22%	2%
QE hydrogen scattering	19%	0%

by Joe Grange

0-8. anti-vCCQE measurement

anti-vCCQE Q² distribution

The current analysis is done with quite parallel manner with vCCQE. The preliminary result also support high M_A value in data-MC Q² shape-only comparison. We are working on the improvement of this analysis.

11/30/2009

Teppei Katori, MIT

0-9. NuInt09 conclusions

All talks proceedings are available on online (open access), http://proceedings.aip.org/proceedings/confproceed/1189.jsp

Some realizations from NuInt09

NuInt is the far most advanced place to discuss neutrino cross sections.

- 1. Importance to use the better models for neutrino interaction generators
- Importance to provide data with the form available for theorists, this includes, i) detector efficiency is corrected

ii) free from reconstruction biases (data as a function of measured quantities)

iii) free from model dependent background subtraction, rather provide inclusive data

by many people

22

- **1. Booster neutrino beamline**
- 2. MiniBooNE detector
- **3. CCQE events in MiniBooNE**
- **4.** CC1 π background constraint
- 5. CCQE M_A^{eff} - κ shape-only fit
- 6. CCQE absolute cross section
- 7 Conclusion

MiniBooNE collaboration, PRD79(2009)072002

1. Booster Neutrino Beamline

1. Booster Neutrino Beamline

MiniBooNE collaboration, PRD79(2009)072002

Magnetic focusing horn

MiniBooNE collaboration, PRD79(2009)072002

1. Booster Neutrino Beamline

<text><page-header>

Majority of pions create neutrinos in MiniBooNE are directly measured by HARP (>80%) Modeling of meson production is based on the measurement done by HARP collaboration

- Identical, but 5% λ Beryllium target
- 8.9 GeV/c proton beam momentum

HARP collaboration, Eur.Phys.J.C52(2007)29

Booster neutrino beamline pion kinematic space

11/30/2009

MiniBooNE collaboration, PRD79(2009)072002

1. Booster Neutrino Beamline

The error on the HARP data ($\sim 7\%$) directly propagates. The neutrino flux error is the dominant source of normalization error for an absolute cross section in MiniBooNE.

Modeling of meson production is based on the measurement done by HARP collaboration

- Identical, but 5% λ Beryllium target
- 8.9 GeV/c proton beam momentum

HARP collaboration. Eur.Phys.J.C52(2007)29

27

11/30/2009

MiniBooNE collaboration, PRD79(2009)072002

1. Booster Neutrino Beamline

1. Booster neutrino beamline

2. MiniBooNE detector

- **3. CCQE events in MiniBooNE**
- **4.** CC1 π background constraint
- 5. CCQE M_A^{eff} - κ shape-only fit
- 6. CCQE absolute cross section
- 7 Conclusion

The MiniBooNE Detector

- 541 meters downstream of target
- 3 meter overburden
- 12 meter diameter sphere
 - (10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH₂) (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes
 - Simulated with a GEANT3 Monte Carlo

The MiniBooNE Detector

- 541 meters downstream of target
- 3 meter overburden
- 12 meter diameter sphere
 (10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH_2)
 - (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes

The MiniBooNE Detector

- 541 meters downstream of target

- 3 meter overburden

- 12 meter diameter sphere(10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH₂)
 (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes

The MiniBooNE Detector

- 541 meters downstream of target
- 3 meter overburden
- 12 meter diameter sphere(10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH₂) (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes

Extinction rate of MiniBooNE oil

The MiniBooNE Detector

- 541 meters downstream of target
- 3 meter overburden
- 12 meter diameter sphere(10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH₂)

(Fiducial volume: 450 t)

- 1280 inner phototubes,
- 240 veto phototubes

The MiniBooNE Detector

- 541 meters downstream of target
- 3 meter overburden
- 12 meter diameter sphere
 - (10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH₂) (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes

Simulated with a GEANT3 Monte Carlo

11/30/2009

Times of hit-clusters (subevents) **Beam and** Beam spill (1.6µs) is clearly **Cosmic BG** evident x 10² simple cuts eliminate cosmic 1400 backgrounds Tank hits > 10 1200 Neutrino Candidate Cuts <6 veto PMT hits 1000 Gets rid of muons 800 >200 tank PMT hits 600 Gets rid of Michels 400 Only neutrinos are left! 200 0 20000 2000 4000 6000 8000 10000 14000 16000 18000 Event Time (ns) 11/30/2009 Teppei Ka
2. MiniBooNE detector

Times of hit-clusters (subevents) **Beam and** Beam spill (1.6µs) is clearly **Michels** evident simple cuts eliminate cosmic 70000 backgrounds Tank hits > 10 60000 Veto hits < 6 Neutrino Candidate Cuts <6 veto PMT hits 50000 Gets rid of muons 40000 >200 tank PMT hits 30000 Gets rid of Michels 20000 Only neutrinos are left! 10000 0 2000 4000 6000 14000 16000 18000 20000 8000 10000 Event Time (ns) 11/30/2009 Teppei Ka

2. MiniBooNE detector

1. Booster neutrino beamline

- 2. MiniBooNE detector
- **3. CCQE events in MiniBooNE**
- **4.** CC1 π background constraint
- 5. CCQE M_A^{eff} - κ shape-only fit
- 6. CCQE absolute cross section
- 7 Conclusion

 v_{μ} charged current quasi-elastic (v_{μ} CCQE) interaction is an important channel for the neutrino oscillation physics and the most abundant (~40%) interaction type in MiniBooNE detector

 v_{μ} charged current quasi-elastic (v_{μ} CCQE) interaction is an important channel for the neutrino oscillation physics and the most abundant (~40%) interaction type in MiniBooNE detector

 v_{μ} CCQE interactions (v+n $\rightarrow \mu$ +p) has characteristic two "subevent" structure from muon decay

11/30/2009

All kinematics are specified from 2 observables, muon energy $\, E_{\mu}^{}$ and muon scattering angle $\theta_{\mu}^{}$

Energy of the neutrino E_v^{QE} and 4-momentum transfer Q^2_{QE} can be reconstructed by these 2 observables, under the assumption of CCQE interaction with bound neutron at rest ("QE assumption")

$$E_{\nu}^{QE} = \frac{2(M - E_{B})E_{\mu} - (E_{B}^{2} - 2ME_{B} + m_{\mu}^{2} + \Delta M^{2})}{2[(M - E_{B}) - E_{\mu} + p_{\mu}\cos\theta_{\mu}]}$$
$$Q_{QE}^{2} = -m_{\mu}^{2} + 2E_{\nu}^{QE}(E_{\mu} - p_{\mu}\cos\theta_{\mu})$$
$$\underbrace{\nu - beam}^{12} \underbrace{\mu \cos\theta_{\mu}}^{12} \underbrace{\cos\theta_{\mu}}^{12} \underbrace$$

11/30/2009

Teppei Katori, MIT

1. Booster neutrino beamline

- 2. MiniBooNE detector
- **3. CCQE events in MiniBooNE**
- **4.** CC1 π background constraint
- 5. CCQE M_A^{eff} - κ shape-only fit
- 6. CCQE absolute cross section
- 7 Conclusion

4. CC1 π background constraint, introduction

data-MC comparison, in 2 subevent sample (absolute scale)

Problem 1

CCQE sample shows good agreement in shape, because we tuned relativistic Fermi gas (RFG) parameters.

MiniBooNE collaboration, PRL100(2008)032301

However absolute normalization does not agree.

The background is dominated with $CC1\pi$ without pion (CCQE-like). We need a background prediction with an absolute scale.

CCQE 1

$$\nu_{\mu} + n \rightarrow \mu^{-} + p \rightarrow \nu_{\mu} + \overline{\nu_{e}} + e^{-} + p$$

CC1 π 1
 $\nu_{\mu} + N \rightarrow \mu^{-} + \chi^{+} + N \rightarrow \nu_{\mu} + \overline{\nu_{e}} + e^{-} + N$
(π -absorption)

11/30/2009

Teppei Katori, MIT

4. CC1 π background constraint, introduction

data-MC comparison, in 3 subevent sample (absolute scale)

Events

Problem 2

 $CC1\pi$ sample is worse situation, data and MC do not agree in shape nor normalization.

Under this situation, we cannot use $CC1\pi$ prediction for background subtraction for CCQE absolute cross section measurement.

$$\begin{array}{c} \mathbf{CC1}\pi & \mathbf{1} \\ \mathbf{v}_{\mu} + \mathbf{N} \rightarrow \mathbf{\mu}^{-} + \pi^{+} + \mathbf{N} \rightarrow \mathbf{v}_{\mu} + \mathbf{\overline{v}_{e}} + \mathbf{e}^{-} + \mathbf{N} \\ \downarrow & \downarrow \\ \rightarrow \mathbf{v}_{\mu} + \mu^{+} \rightarrow \mathbf{v}_{\mu} + \mathbf{\overline{v}_{e}} + \mathbf{e}^{+} + \mathbf{N} \end{array}$$

4. CC1 π background constraint

data-MC comparison, before CC1 π constraint (absolute scale)

Solution

Use data-MC Q^2 ratio in CC1 π sample to correct all CC1 π events in MC.

Then, this "new" MC is used to predicts $CC1\pi$ background in CCQE sample

This correction gives both $CC1\pi$ background normalization and shape in CCQE sample

Teppei Katori, MIT

4. CC1 π background constraint

data-MC comparison, after CC1 π constraint (absolute scale)

Now we have an absolute prediction of $CC1\pi$ background in CCQE sample.

We are ready to measure the absolute CCQE cross section!

Teppei Katori, MIT

4. CC1 π background constraint

This data driven MC tuning is based on 2 assumptions.

1. Kinematics measurement consistency between 2 and 3 subevent sample

Since 3 subevent has an additional particle (=pion), light profile is different. ~9% of events are misreconstructed to high Q^2 in 3 subevent, but majority of them are $Q^2>0.5$ GeV², so they don't join the background subtraction.

2. Pion absorption

The background subtraction is based on the assumption that our pion absorption model in the MC is right. We assume 25% error for nuclear pion absorption, 30% for nuclear pion charge exchange, 35% for detector pion absorption, and 50% for detector pion charge exchange. On top of that, we also include the shape error of pion absorption by change the fraction of resonance and coherent component.

- **1. Booster neutrino beamline**
- 2. MiniBooNE detector
- **3. CCQE events in MiniBooNE**
- **4.** CC1 π background constraint
- 5. CCQE M_A^{eff} - κ shape-only fit
- 6. CCQE absolute cross section
- 7 Conclusion

Smith and Moniz, Nucl.,Phys.,B43(1972)605

5. Relativistic Fermi Gas (RFG) model

Relativistic Fermi Gas (RFG) Model

Carbon is described by the collection of incoherent Fermi gas particles. All details come from hadronic tensor.

$$(W_{\mu\nu})_{ab} = \int_{Elo} f(\vec{k},\vec{q},w)T_{\mu\nu}dE$$
 : hadronic tensor

 $f(\vec{k},\vec{q},w)$: nucleon phase space density function

$$T_{\mu\nu} = T_{\mu\nu}(F_1, F_2, F_A, F_P)$$
 : nucleon tensor

 $F_A(Q^2) = g_A / (1 + Q^2 / M_A^2)^2$: Axial form factor

Ehi : the highest energy state of nucleon = $\sqrt{(p_F^2 + M^2)}$

Elo : the lowest energy state of nucleon = $\kappa \left(\sqrt{(p_F^2 + M^2)} - \omega + E_B \right)$

We tuned following 2 parameters using Q² distribution by least χ^2 fit; M_A = effective axial mass κ = Pauli blocking parameter

5. Pauli blocking parameter "kappa", к

We performed shape-only fit for Q² distribution to fix CCQE shape within RFG model, by tuning M_A^{eff} (effective axial mass) and κ

Pauli blocking parameter "kappa", ĸ

To enhance the Pauli blocking at low Q^2 , we introduced a new parameter κ , which is the energy scale factor of lower bound of nucleon sea in RFG model in Smith-Moniz formalism, and controls the size of nucleon phase space

5. Kappa and (e,e') experiments

In low |q|, The RFG model systematically over predicts cross section for electron scattering experiments at low |q| (~low Q²)

Teppei Katori, MIT

5. Kappa and (e,e') experiments

In low |q|, The RFG model systematically over predicts cross section for electron scattering experiments at low |q| (~low Q²)

We had investigated the effect of Pauli blocking parameter " κ " in (e,e') data. κ cannot fix the shape mismatching of (e,e') data for each angle and energy, but it can fix integral of each cross section data, which is the observables for neutrino experiments. We conclude κ is consistent with (e,e') data.

5. Kappa and (e,e') experiments

In low |q|, The RFG model systematically over predicts cross section for electron scattering experiments at low |q| (~low Q²)

We had investigated the effect of Pauli blocking parameter " κ " in (e,e') data. κ cannot fix the shape mismatching of (e,e') data for each angle and energy, but it can fix integral of each cross section data, which is the observables for neutrino experiments. We conclude κ is consistent with (e,e') data.

58

5. M_A^{eff} - κ shape-only fit

 $M_{\text{A}}^{\text{eff}}$ - κ shape-only fit result

 $M_{A}^{eff} = 1.35 \pm 0.17 \text{ GeV (stat+sys)}$ $\kappa = 1.007 + 0.007 \text{ (stat+sys)}$ $\chi^{2}/\text{ndf} = 47.0/38$

Q2 fits to MB ν_{μ} CCQE data using the nuclear parameters:

 M_A eff - effective axial mass κ - Pauli Blocking parameter

Relativistic Fermi Gas Model with tuned parameters describes v_{μ} CCQE data well

Q2 distribution before and after fitting

5. M_A^{eff} - κ shape-only fit

 $M_{\text{A}}^{\text{eff}}$ - κ shape-only fit result

$$\begin{split} \mathsf{M}_{\mathsf{A}}^{\mathsf{eff}} &= 1.35 \pm 0.17 \; \mathsf{GeV} \; (\mathsf{stat+sys}) \\ \kappa &= 1.007 \, {}^{+ \, 0.007} \, {}_{- \, \infty} \; (\mathsf{stat+sys}) \\ \chi^2 / \mathsf{ndf} &= 47.0 / 38 \end{split}$$

 M_A^{eff} goes even up, this is related to our new background subtraction.

κ goes down due to the shape change of the background. Now κ is consistent with 1. κ doesn't affects cross section below ~0.995. M_A^{eff} only fit M_A^{eff} = 1.37 ± 0.12 GeV χ^2 /ndf = 48.6/39

5. M_A^{eff} - κ shape-only fit

 M_A^{eff} - κ shape-only fit result

 $M_A^{eff} = 1.35 \pm 0.17 \text{ GeV} \text{ (stat+sys)}$ $\kappa = 1.007 + 0.007$ _ ∞ (stat+sys)

Data-MC agreement in T_{μ} -cos θ kinematic plane is good.

World averaged RFG model 0.2 $M_{(a)}^{\text{eff}} = 1.03, \ \kappa_{(c)} = 1.000$ (d) 1.2 $\cos\theta_{\mu}$ -0 0.8 1.15 -0.2 0.6 1.1 (a) $E_v^{QE} = 0.4 \text{GeV}$ 0.4 -0.4 1.05 (b) $E_v^{QE} = 0.8 \text{GeV}$ 0.2 (c) $E_v^{QE} = 1.2 \text{GeV}$ -0 -0.6 (d) $Q_{OF}^2 = 0.2 \text{GeV}^2$ -0.2 0.95 -0.8 (e) $Q_{0r}^2 = 0.6 \text{GeV}^2$ -0.4 0.9 (f) $Q_{0F}^2 = 1.0 \text{GeV}^2$ -0.6 -1⊾ 0 0.85 -0.8 0.2 0.4 0.6 0.8 1 -1 0.8 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 T_{II} (GeV) 11/30/2009 Teppei Katori, MIT

This new CCQE model doesn't affect our cross section result.

MiniBooNE collaboration, PRL100(2008)032301

5. T_{μ} -cos θ_{μ} plane

Without knowing flux perfectly, we cannot modify cross section model $R(int\,eraction) \propto \int (flux) \times (xs)$

62

5. T_{μ} -cos θ_{μ} plane

Without knowing flux perfectly, we cannot modify cross section model

R(interaction[E_v, Q^2]) $\propto \int (flux[E_v]) \times (xs[Q^2])$

Data-MC mismatching follows Q2 lines, not E_v lines, therefore we can see the problem is not the flux prediction, but the cross section model

5. T_{μ} -cos θ_{μ} plane

Without knowing flux perfectly, we cannot modify cross section model

R(interaction[E_v, Q^2]) $\propto \int (flux[E_v]) \times (xs[Q^2])$

Data-MC mismatching follows Q2 lines, not E_v lines, therefore we can see the problem is not the flux prediction, but the cross section model

- **1. Booster neutrino beamline**
- **2. MiniBooNE detector**
- **3. CCQE events in MiniBooNE**
- **4.** CC1 π background constraint
- 5. CCQE M_A^{eff} - κ shape-only fit
- 6. CCQE absolute cross section
- 7 Conclusion

Absolute flux-averaged differential cross section formula

11/30/2009

Absolute flux-averaged differential cross section formula

D'Agostini, NIM.A362(1995)487

·b_i) ε_i (ΦΤ)

 σ_i

Absolute flux-averaged differential cross section formula

:true index

: reconstructed index

True distribution is obtained from unsmearing matrix made by MC. This technique is called "iterative Bayesian method" and known to be biased (discuss later).

Notice, this unsmearing corrects detector effect of muon detection, and no nuclear model dependence.

11/30/2009

11/30/2009

0.4E true index: 0.35 🗅 : reconstructed index 0.3 Then, efficiency is corrected 0.25 bin by bin (true bin). 0.2 0.15 Again, efficiency correction correct detection efficiency of **0.1**⊨ muon, and no nuclear model 0.05 dependence. 0 t 0.2 2 0.6 0.8 1.2 1.6 1.8 0.4 1.4 Efficiency of muon detection (GeV) Other word, if target distribution is reconstructed function of true muon energy, before cut variable (Q^2 , E_V , etc), you have to be careful how these function of true processes have been done. muon energy, after cut Teppei Katori, MIT

D'Agostini, 6. CCQE absolute cross section NIM.A362(1995)487

Absolute flux-averaged differential cross section formula

 $\sum_{j} U_{ij} (d_j - b_j)$ $\sigma_i =$

69

6. CCQE absolute cross section D'Agostini, NIM.A362(1995)487

Absolute flux-averaged differential cross section formula

i :true index j : reconstructed index

Then, efficiency corrected data is used to generate next unsmearing matrix (1st iteration). Any higher iteration gives ~same result.

Irreducible background is unfolded same way, by assuming efficiency is same.

 $U_{ii}(d_i - b_i)$

ε_i (ΦΤ

 σ_{i}

70

Absolute flux-averaged differential cross section formula

i :true index

j : reconstructed index

Finally, total flux and target number are corrected.

MiniBooNE flux prediction 100% rely on external beam measurement (HARP) and beamline simulation, and it doesn't depend on neutrino measurements by MiniBooNE.

Flux Φ = integral of predicted v_{μ} -flux T = volume X oil density X neutron fraction

Flux-averaged single differential cross section (Q²_{QE})

The data is compared with various RFG model with neutrino flux averaged.

Compared to the world averaged CCQE model (red), our CCQE data is 30% high

Our model extracted from shape-only fit has better agreement (within our total normalization error).

6. CCQE absolute cross section

Flux-averaged single differential cross section (Q^2_{QE})

Irreducible background distribution is overlaid.

Sum of CCQE cross section and irreducible background makes cross section of CCQE-like sample.

Remember, to do that, we need to assume irreducible background has same efficiency with CCQE, but that is not completely true.

6. CCQE absolute cross section

Flux-unfolded total cross section ($E_v^{QE,RFG}$)

New CCQE model is tuned from shape-only fit in Q², and it also describes total cross section well.

6. CCQE errors

Error summary (systematic error dominant)

Flux error dominates the total 36normalization error.

Cross section error is small because of high purity and in situ background measurement.

Detector error dominates shape error, because this is related with energy scale.

Unfolding error is the systematic error associated to unfolding (iterative Bayesian method).

6. QE cross section comparison with NOMAD

Flux-unfolded total cross section (E_vQE,RFG)

New CCQE model is tuned from shape-only fit in Q², and it also describes total cross section well.

Comparing with NOMAD, MiniBooNE cross section is 30% higher, but these 2 experiments leave a gap in energy to allow some interesting physics.

6. CCQE total cross section model dependence

Flux-unfolded total cross section (E_vQE,RFG)

Unfortunately, flux unfolded cross section is model dependent.

Reconstruction bias due to "QE" assumption is corrected under "RFG" model assumption.

One should be careful when comparing fluxunfolded data from different experiments.

6. CCQE total cross section model dependence

Flux-unfolded total cross section (E_v^{RFG})

Unfortunately, flux unfolded cross section is model dependent.

Reconstruction bias due to "QE" assumption is corrected under "RFG" model assumption.

One should be careful when comparing fluxunfolded data from different experiments.

6. CCQE double differential cross section

Flux-averaged double differential cross section (T_{μ} -cos θ)

This is the most complete information about neutrino cross section based on muon kinematic measurement.

The error shown here is shape error, a total normalization error $(\delta N_T = 10.7\%)$ is separated.

6. CCQE double differential cross section

Flux-averaged double differential cross section (T_{μ} -cos θ)

This is the most complete information about neutrino cross section based on muon kinematic measurement.

The error shown here is shape error, a total normalization error $(\delta N_T = 10.7\%)$ is separated.

11/30/2009

Teppei Katori, MIT

7. Conclusions

Using the high statistics and high purity MiniBooNE ν_{μ} CCQE data sample (146,070 events, 27% efficiency, and 77% purity), the absolute cross section is measured. We especially emphasize the measurement of flux-averaged double differential cross section, because this is the most complete set of information for muon kinematics based neutrino interaction measurement. The double differential cross section is the model independent result.

We measured 30% higher cross section than RFG model with the world averaged nuclear parameter. Interesting to note, our total cross section is consistent with RFG model with nuclear parameters extracted from shape-only fit in our Q² data.

BooNE collaboration

University of Alabama
Bucknell University
University of Cincinnati
University of Colorado
Columbia University
Embry Riddle Aeronautical University
Fermi National Accelerator Laboratory
Indiana University
University of Florida

Los Alamos National Laboratory Louisiana State University Massachusetts Institute of Technology University of Michigan Princeton University Saint Mary's University of Minnesota Virginia Polytechnic Institute Yale University

Dziękuję bardzo!

11/30/2009

Teppei Katori, MIT

CC inclusive cut

- veto hits <6 for all subevents
- 1st subevent is within beam window, 4400<T(ns)<6400
- 3. fiducial cut, muon vertex <500cm from tank center
- 4. visible energy cut, muon kinetic energy >200MeV
- 5. μ to e log likelihood cut
- 6. 2 and only 2 subevent
- 7. μ-e vertex distance cut

This cut is not designed to remove $CC1\pi$ events, but trying to remove "others". This is an important step for $CC1\pi$ background fit.

CC inclusive cut \rightarrow CCQE cut

- 1. veto hits <6 for all subevents
- 1st subevent is within beam window, 4400<T(ns)<6400
- fiducial cut, muon vertex
 <500cm from tank center
- 4. visible energy cut, muon kinetic energy >200MeV
- 5. μ to e log likelihood cut
- 6. 2 and only 2 subevent
- 7. μ -e vertex distance cut

 v_{μ} CCQE interactions (v+n $\rightarrow \mu$ +p) has characteristic two "subevent" structure from muon decay

$$\mathbf{v}_{\mu} + \mathbf{n} \rightarrow \mu + \mathbf{p} \qquad \mu \rightarrow \mathbf{v}_{\mu} + \mathbf{v}_{e} + \mathbf{e}$$

CC inclusive cut \rightarrow CCQE cut

- 1. veto hits <6 for all subevents
- 1st subevent is within beam window, 4400<T(ns)<6400
- 3. fiducial cut, muon vertex <500cm from tank center
- 4. visible energy cut, muon kinetic energy >200MeV
- 5. μ to e log likelihood cut
- 6. 2 and only 2 subevent
- 7. μ -e vertex distance cut

This cut is not designed to remove $CC1\pi$, but trying to remove "mis-reconstructed $CC1\pi$ " and "others". This is an important step for $CC1\pi$ background fit.

cut type	efficiency
1. veto hits < 6 for all subevents	45.1
2. 1 st subevent time T is in beam window	44.7
3. 1 st subevent reconstructed vertex < 500 cm	37.5
4. 1 st subevent kinetic energy > 200MeV	32.7
5. μ to e log likelihood cut	31.3
6. 2 subevent total	29.0
7. μ-e vertex distance cut	26.5

26.5% cut efficiency 75.8% purity 146,070 events with 5.58E20POT

11/30/2009

Teppei Katori, MIT

2. CC1 π background fit

MC $T_{\mu}\text{-}\text{cos}\theta$ plane

 $CC1\pi$ kinematics has different shape from CCQE kinematics.

The background cross section error is maximum at the bins where $CC1\pi$ has larger number of event comparing with CCQE.

2. Energy scale of MiniBooNE

Mis-calibration of the detector can mimic large M_A value. Roughly, 2% of energy shift correspond to 0.1GeV change of M_A .

To bring M_A =1.0GeV, 7% energy shift is required, but this is highly disfavored from the data.

Question is what is the possible maximum miscalibration? (without using muon tracker data)

11/30/2009

M_A - κ fit for 2% muon energy shifted data

2. Energy scale of MiniBooNE

Energy resolution is very good. Typical resolution is <10%, and the error is 20-80MeV.

2. Energy scale of MiniBooNE

Range is the independent measure of muon energy. So range-T_{μ} difference for data and MC can be used to measure the possible mis-calibration.

This variable agrees in all energy regions within 1.5%.

Range - $T_{\mu} X 0.5+100$

4. CCQE normalization fit

data-MC comparison, after CCQE normalization fit

After the CC1 π correction, normalization of CCQE is also found from CCQE sample.

We use limited Q² region to find CCQE normalization, so that this fit is insensitive with CCQE shape very much. Butkevich arXiv:0904.1472

Now, CCQE normalization and CC1 π normalization and CC1 π shape looks good, except CCQE shape.

This data driven MC tuning is based on 2 assumptions.

1. Kinematics measurement consistency between 2 and 3 subevent sample

Since 3 subevent has an additional particle (=pion), light profile is different. ~9% of events are misreconstructed to high Q^2 in 3 subevent, but majority of them are $Q^2>0.5$ GeV², so they don't join the background subtraction.

Teppei Katori, MIT

This data driven MC tuning is based on 2 assumptions.

2. Pion absorption

The background subtraction is based on the assumption that our pion absorption model in the MC is right. To study this, we change the amount of pion absorption by a single number. Since pion absorption is the function of pion momentum, this is justified if pion momentum has week correlation with muon kinematics in $CC\pi$ event.

This data driven MC tuning is based on 2 assumptions.

2. Pion absorption

The background subtraction is based on the assumption that our pion absorption model in the MC is right. To study this, we change the fraction of pion absorption.

Pion absorption is increased 0%, 15%, and 30%, meantime coherent fraction is decreased 0%, 50%, and 100%.

Any new xs models can provide good fit in 3 subevent sample in Q².

11/30/2009

Teppei Katori, MIT

95

This data driven MC tuning is based on 2 assumptions.

2. Pion absorption

However, we can differentiate xs models in T_{μ} -cos θ_{μ} plane.15% increase of piabs and 0% of coherent fraction gives the best fit.

We chose 15% for piabs, and 50% for cohfrac as new cv MC which will be used to estimate background from all kinematic distribution. This changes are well within our error (pion absorption 25%, charge exchange 30%). The rest of models go to make a new error matrix.

4. M_A - κ fit Least χ^2 fit for Q² distribution χ^2 = (data - MC)T (M_{total})⁻¹ (data - MC)

 χ^2 minimum is found by global scan of shape only fit with 0.0<Q2(GeV2)<1.0

4. CCQE absolute cross section

Absolute flux-averaged differential cross section formula

4. CCQE absolute cross section

Absolute flux-unfolded total cross section formula

5. CCQE double differential cross section

Flux-averaged double differential cross section (T_{μ} -cos θ)

This is the most complete information about neutrino cross section based on muon kinematic measurement.

The error shown here is total error.

5. CCQE double differential cross section

Flux-averaged double differential cross section (T_{μ} -cos θ)

This is the most complete information about neutrino cross section based on muon kinematic measurement.

The error shown here is total error.

11/30/2009

Teppei Katori, MIT

5. CCQE flux error

Flux error

The flux error dominates total normalization error.

The shape error is weak, except high energy region, where HARP measurement has large error and skin effect of horn has large error.

5. CCQE background cross section error

Background cross section error

The background cross section error is small, because of high purity and in situ background constraint.

The large error comes from pion absorption, so the kinematic space of CC1 π events has large error

5. CCQE detector error

Detector error

The detector error has the largest contribution to the shape error because it is related with the energy scale of muon.

However the contribution to the total normalization error is not so large.

Teppei Katori, MIT

Jon Link, Nov. 18, 2005 Fermilab Wine & Cheese seminar

E 23, NUMBER 11

Quasielastic neutrino scattering: A measurement of the weak nucleon axial-vector form factor

N. J. Baker, A. M. Cnops,* P. L. Connolly, S. A. Kahn, H. G. Kirk, M. J. Murtagh, R. B. Palmer, N. P. Samios, and M. Tanaka

> Brookhaven National Laboratory, Upton, New York 11973 (Received 12 February 1981)

Brookhaven The quasielastic reaction $\nu_{\mu}n \rightarrow \mu^{-}p$ was studied in an experiment using the BNL 7-foot deuterium bubble chamber THE D2 BUDDIE exposed to the wide-band neutrino beam with an average energy of 1.6 GeV. A total of 1138 quasielastic events in the momentum-transfer range $Q^2 = 0.06 - 3.00 \ (\text{GeV}/c)^2$ were selected by kinematic fitting and particle identification and were used to extract the axial-vector form factor $F_A(Q^2)$ from the Q^2 distribution. In the framework of the conventional V - A theory, we find that the dipole parametrization is favored over the monopole. The value of the axial-vector mass M_4 in the dipole parametrization is 1.07 ± 0.06 GeV, which is in good agreement with both recent neutrino and electroproduction experiments. In addition, the standard assumptions of conserved vector current and no second-class currents are checked.

We have used a maximum likelihood method to extract M_A from the shape of the Q^2 distribution for each observed neutrino energy. This likelihood function \mathfrak{L}^{I} is independent of the shape of the neutrino spectrum ...

They didn't even try to determine their v flux from pion production and beam dynamics.

Phys. Rev. D 25, 617 (1982)

In subsequent cross section analyses the theoretical ("known") quas-ielastic cross section and observed quasi-elastic events

The distribution of events in neutrino energy for the 3C $vd \rightarrow \mu^- pp_s$ events is shown in Fig. 4 together with the quasielastic cross section $\sigma(\nu n \rightarrow \mu^{-}p)$ calculated using the standard V - Atheory with $M_A = 1.05 \pm 0.05$ GeV and $M_V = 0.84$ GeV. The absolute cross sections for the CC inwere used to determine the flux eppei Katoric events and its known cross section.4 teractions have been measured using the quasielas-105

Jon Link, Nov. 18, 2005 Fermilab Wine & Cheese seminar Neutrino Flux and Tota in High-En-Fermilabe Chamber in High-En-Fort D2 1591 D2

REVIEW LETTERS

Neutrino Flux and Total Charged-Current Cross Sections in High-Energy Neutrino-Deuterium Interactions

T. Kitagaki, S. Tanaka, H. Yuta, K. Abe, K. Hasegawa, A. Yamaguchi, K. Tamai, T. Hayashino, Y. Ohtani, and H. Hayano

Tohoku University, Sendai 980, Japan

To obtain the total cross section from the number of events, the neutrino flux has to be measured on an absolute scale. In this analysis, we determine the neutrino flux using 362 quasielastic events identified in our data¹⁰ and the cross section for reaction (2) derived from the V - A theory.

Again, they use QE events and theoretical cross section to calculate the v.

When they try to get the flux from meson (π and K) production and decay kinematics they fail miserably for E_v<30 GeV.

FIG. 2. Neutrino flux distribution obtained from the quasielastic events and the predicted cross section with $M_A = 1.05$ GeV. The solid curve is obtained from the best fit to the flux data for $E_v > 30$ GeV. The dashed curve is taken from the Monte Carlo simulation of the flux.

11/30/2009

Teppei Katori, MIT

ME 34, NUMBER 1

Determination of the neutrino fluxes in the Brookhaven wide-band beams

L. A. Ahrens, S. H. Aronson, P. L. Connolly,* B. G. Gibbard, M. J. Murtagh, S. J. Murtagh, S. Terada, and D. H. White

Physics Department, Brookhaven National Laboratory, Upton, New York 11973

The beam calculations described here were based on the Grote, Hagedorn, and Ranft (GHR) (Ref. 11) parametrization; that of Sanford and Wang was used for comparison. An estimate was made of pion production by reinteracting protons guided by the shape of the observed v_{μ} spectrum and the observed angular distribution of muons from quasielastic events. The procedure is described¹² in the Appendix.

The Procedure

•Pion production cross sections in some low momentum bins are scaled up by 18 to 79%.

- The K⁺ to π^+ ratio is increased by 25%.
- Overall neutrino (anti-neutrino) flux is increased by 10% (30%).

All driven by the neutrino events observed in the detector!

11/30/2009

Teppei Katori, MIT

Jon Link, Nov. 18, 2005 Fermilab Wine & Cheese seminar

16, NUMBER 11

Study of neutrino interactions in hydrogen and deuterium: Description of the experiment and study of the reaction $\nu + d \rightarrow \mu + p + p_s^{\dagger}$

S. J. Barish,* J. Campbell,[‡] G. Charlton,[§] Y. Cho, M. Derrick, R. Engelmann,^{||} L. G. Hyman, D. Jankowski, A. Mann,^{||} B. Musgrave, P. Schreiner, P. F. Schultz, R. Singer, M. Szczekowski,** T. Wangler, and H. Yuta^{††} Argonne National Laboratory, Argonne, Illinois 60439

Flux derived from pion production data. Were able to test assumptions about the form of the cross section using absolute rate and shape information.

Likelihood function	$M_A^{ m Dipole}$ (GeV)	M_A^{Monopole} (GeV)	M_A^{Tripole} (GeV)
Rate	$0.75^{+0.13}_{-0.11}$	$0.45^{+0.11}_{-0.07}$	$0.96^{+0.17}_{-0.14}$
Shape	1.010 ± 0.09	0.56 ± 0.08	1.32 ± 0.11
Rate and shape	0.95 ± 0.09	0.52 ± 0.08	1.25 ± 0.11
Flux independent	0.95 ± 0.09	0.53 ± 0.08	1.25 ± 0.11

TABLE IV. Results of axial-form-factor fits.

• Pion production measured in ZGS beams were used in this analysis

• A very careful job was done to normalize the beam.

• Yet they have a 25% inconsistency between the axial mass they measure considering only rate information verses considering only spectral information.

Interpretation: Their normalization is wrong.