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Two Finite Potential Holes

The hamiltonian reads
H2,V0 = HL,V0 + HR,V0 , (1)

where

H(x) =


0 dla x ∈

(
−∞,− a

2

)
−V0 dla x ∈

(
− a

2 ,
a
2

)
0 dla x ∈

(
a
2 ,∞

)
.

and
HL,V0 (x) = H(x + a), HR,V0 (x) = H(x − a). (2)

Parity-Invariance
The Hamiltonian is Parity-Invariant

PH2,V0 (x)P−1 = H2,V0 (−x). (3)

It degenerates the Hamiltonian eigenstates.



The Ledder of States

States: Left- and Right- Handed

| n〉L0 , | n〉R0 , n = 0, 1, 2, ... (4)

where
HL,V0 | n〉

0
L = E0

n | n〉0L, HR,V0 | n〉
0
R = E0

n | n〉0R . (5)

Notice the symmetry properties:

PHL,V0P
−1 = HR,V0 , P | n〉0L =| n〉0R . (6)

The total hamiltonian eigenstates are degenerate

| n〉0± =
1
√
2

(
| n〉0L± | n〉

0
R
)
, P | n〉0± = ± | n〉0±. (7)



Consider small perturbation and apply the Stationary Perturbation Calculus for
Degenerate Case.

H = H2,V0 + λV (8)

Perturbation
We assume that the state can be written as

| n〉 =| n〉0 + λ | n〉1 + λ2 | n〉2 + ... (9)

and the total energy of the n-th state reads

En = E0
n + λE1

n + λ2E2
n + ... (10)



Degeneracy
Now the problem is that if the sates are degenerated then the standard derivation will
lead to the singular solutions. The point is that the perturbation will somehow breaks
the degeneracy, but in particular way. It means that every state

| n〉i (11)

has to be replaced by the eigenvector of (8).

| n〉0 → | n〉0 =
∑

j=+,−

Cn
j | n〉0±. (12)

Then the state after perturbation reads

| n〉 = | n〉0 + λ| n〉1 + λ2| n〉2 + ... (13)



Now we take all the equations together:(
H2,V0 + λV

) (
| n〉0 + λ| n〉1 + λ2| n〉2 + ...

)
= (14)(

E0
n + λE1

n + λ2E2
n + ...

) (
| n〉0 + λ| n〉1 + λ2| n〉2 + ...

)
(15)

For the ground states We have the equations:

H2,V0 | 0〉0 = E0
0 | 0〉0

H2,V0 | 1〉0 + V | 0〉0 = E0
n | 0〉1 + E1

0 | 0〉0 (16)
... = ... (17)



Take into consideration the second equation

0
j 〈0 | H2,V0 | 1〉0 +0

j 〈0 | V | 0〉0 =0
j 〈0 | E0

n | 0〉1 +0
j 〈0 | E1

0 | 0〉0 (18)

Then we obtain ∑
i=−,+

0
j 〈0 | V | 0〉0i C0

i = E1
0 C0

j , (19)

which can be re-written as it follows∑
i=−,+

Vji C0
i = E1

0 C0
j , (20)

It is the eigen-equation.



Solution

Consider the potential which is odd in x e.g.

V (x) = x . (21)

The eigenvalue equation reads∣∣∣∣∣
0
+〈0 | V | 0〉0+ − E1

0
0
+〈0 | V | 0〉0−

0
−〈0 | V | 0〉0+ 0

−〈0 | V | 0〉0− − E1
0

∣∣∣∣∣ = 0.

Now notice the properties

0
+〈0 | V | 0〉0+ =0

+ 〈0 | PVP−1 | 0〉0+ = −0
+〈0 | V | 0〉0+ ⇒0

+ 〈0 | V | 0〉0+ (22)

Analogically
0
−〈0 | V | 0〉0− = 0 (23)

Then let see

a ≡0
+ 〈0 | V | 0〉0− = −0

+〈0 | PVP−1 | 0〉0− = 0
+〈0 | V | 0〉0− = 0

−〈0 | V | 0〉0+
∗ (24)



After that we have∣∣∣−E1
0 a

a∗ −E1
0

∣∣∣ = (E1
0 )2 − |a|2 = 0 ⇒ E1

0 ± |a|.

It means that the new energy of the prior-ground states read

E0 = E0
0 ± λ|a|. (25)

It means that the degeneracy of the ground state vanishes. And one of the prior
ground states is chosen for the real vacuum.



Goldstone Theorem One More Time

Consider the Lagrangian depending on N scalar fields and their derivatives

L(φi , ∂µφj ) = ∂µ~φ · ∂µ~φ− V (~φ). (26)

The lagrangian is invariant under the continues group G:

g ∈ G, : φi → φi + δφi , δφi = −iθata
ijφj . (27)

T a = ta
ij are hermitian, antisymmetric and purely imaginary.

Assume that the potential has the minimum at

~φmin = 〈~φ〉, (28)

which is invariant under subgroup H of G.



Let expand potential around this minimum, φi = φi + χi

V (~φ) = V (~φmin) +
∂V (~φmin)

∂φi
χi︸ ︷︷ ︸

=0

+
1
2
∂2V (~φmin)

∂φi∂φj︸ ︷︷ ︸
=m2

ij

χiχj + ... (29)

By definition m2
ij is symmetric, and because it is around minimum, positive

semidefinite, i.e. ∑
i,j

m2
ij xi xj ≥ 0, (30)

for every ~x .
It means that the m2

ij matrix can be diagonalized and have nonnegative eigenvalues.



Consider

V (~φmin) = V (D(g)~φmin) = V (~φmin +δ~φmin) = V (~φmin)+
1
2

m2
ijδφmin,iδφmin,j +... (31)

It means that
m2

ijδφmin,iδφmin,j = 0 ⇒ m2
ijδφmin,j = ~0. (32)

differentiating with respect to δφi and using the symmetry of the matrix mij leads to
the equation:

M2δ~φ = ~0. (33)

Hence
M2T a~φmin = ~0. (34)



Conclusions
The solution can be classified into two categories:

I Ta, a=1, ..., nH is a representation of an element of the Lie algebra belonging to
the subgroup H of G. Because

T a~φmin = ~0, a = 1, ..., nH . (35)

I T a, a = nH + 1, ..., nG is not representation of any element belonging to H group.
So

T a~φi 6= 0, i = nH+1, ..., nG . (36)

and T a~φi is an eigenvector of M2 matrix with eigenvalue 0! To each such
eigenvector corresponds one Massless Goldstone Boson. T a~φi ’s are linearly
independent, let see:

~0 =

nG∑
a=nH+1

ca
(

T a~φmin
)

=

 nG∑
a=nH+1

caT a

 ~φmin (37)

The element

T =

 nG∑
a=nH+1

caT a

 (38)

belongs to H which is in contradiction with initial assumption.



Goldstone Theorem More General Point of View

The Noether Current is Conserved:

∂µJµ = 0, (39)

Consider the commutator

0 =

∫
d3x [∂µJµ(x , t), φ(0)] = ∂0

∫
d3x [J0(x , t), φ(0)]+

∫
dS · [J(x , t), φ(0)]︸ ︷︷ ︸

vanishing

(40)

Hence
d
dt

[Q(x , t), φ(0)] = 0 (41)

The Spontaneous Symmetry Breaking Occurs if

〈0 | [Q(x , t), φ(0)] | 0〉 = η 6= 0, (42)



〈0 | [Q(x, t), φ(0)] | 0〉 =

∑
n

[〈0 | Q(x, t) | n〉〈n | φ(0) | 0〉 − 〈0 | φ(0) | n〉〈n | Q(x, t) | 0〉]

= (2π)3
∑

n

δ(pn)

e−iEnt〈0 | J(0) | n〉〈n | φ(0) | 0〉 − eiEnt 〈0 | φ(0) | n〉〈n | J(0) | 0〉︸ ︷︷ ︸
cn


= (2π)3

∑
n

δ(pn)

[
e−iEnt c∗n − eiEnt cn

]
(43)

= (2π)3
∑

n

δ(pn)

[
e−iEnt c∗n − eiEnt cn

]
(44)

Define
cn = |cn|e

iφn (45)

Then

η = 〈0 | [Q(x, t), φ(0)] | 0〉 = −2i(2π)3
∑

n

δ(pn)|cn| sin (Ent + φn) (46)

Because η is time independent hence in order to satisfy the equality the following conditions has to be spent

δ(pn) = 0, En = 0 (47)

〈0 | J(0) | n〉 6= 0 〈n | φ(0) | 0〉 6= 0 (48)



Symmetry Breaking in the linear-σ model
The potential

V (σ, ~π) = −
µ2

2
(
σ2 + ~π2

)
+
λ

4
(
σ2 + ~π2

)2 (49)

is the function of the form:

V (x) = −
µ2

2
x +

λ

4
x2, x ≥ 0. (50)

Assuming that λ > 0 then above function has the minimum, which is given by

0 =
∂V (x)

∂x
=
λ

2

(
x −

µ2

λ

)
. (51)



In the filed configuration it means that the following relation

µ2

λ
=
(
σ2 + ~π2

)
. (52)

has to be satisfied by the ground states.
Choosing one particular field configuration at minimum breaks the global symmetry,
and choose one particular configuration for the vacuum. The most popular choice is:

〈0 | σ | 0〉 = v , 〈0 | πi | 0〉 = 0, i = 1, 2, 3. (53)



Useful Formulae
One can verify that after breaking the symmetry in the above way we have the
following properties:

[πi ,Q5j ] = iδijσ, [Qi , πj ] = iεijkπk , [Qi , σ] = 0, [Q5i , σ] = iπi . (54)

Axial Symmetry Breaking

0 6= 〈0 | σ | 0〉δij = 〈0 | σδij | 0〉 = 〈0 | i[Q5i , πj ] | 0〉 ⇒ Q5i | 0〉 6= 0. (55)

0 6= −iδij 〈0 | σ | 0〉 = 〈0 | [Q5i , πj ] | 0〉 (56)
⇒ 0 6= 〈0 | Q5iπj | 0〉 = 〈0 | Q5i | πj 〉 (57)

Notice that chosen condition are still SUV (2) invariant. Hence Qi , i =1, 2, 3 remain
unbroken!



One More Property

〈0 | [Q5i
, πi ] | 0〉 =

∫
d3x〈0 | [A5i

0 (x), πi (0)] | 0〉 (58)

=

∑
n

(2π)3δ(pn)

(
〈0 | A5i

0 (0) | n〉〈n | πi (0) | 0〉e−iEnt − 〈0 | πi (0) | n〉〈n | A5i
0 (0) | 0〉e+iEnt

)
⇒ 0 6= 〈0 | πi | π〉, 0 6= 〈0 | Ai

0 | π〉!!! ⇒︸︷︷︸
from−Lorentz−covariance

0 6= 〈0 | Ai
µ | π〉 (59)

(60)

The lowest hadron state | n = π〉!



Symmetry Breaking Pattern

SUV (2)× SUA(2)→ SUV (2). (61)



Come Back to the Lagrangian

We expect that pions remain as the massless fields, while the sigma becomes the
massive particle. This mechanism generates also the nucleon masses.

σ → σ = σ′ − v , π → π. (62)

Then the nucleon mass is obtained

gN
(
σ′ + iγ5~τ · ~π

)
N → gN

(
σ′ − v + iγ5~τ · ~π

)
N (63)

hence
gv = M (64)

Now look at the potential

V (σ′, ~π) →
µ2

2
σ′

2︸ ︷︷ ︸
gives mass to σ

−
µ2

4
v2 + λvσ′(σ′2 + ~π2) +

λ

4
(
σ′

2
+ ~π2

)2
(65)



The lagrangian after symmetry breaking reads

Lbroken(x) =
1
2
[
∂µσ
′∂µσ′ − µ2σ′2

]
+

1
2
∂µ~π · ∂µ~π + N [iγµ∂µ − gv ] N

−gN
(
σ′ + iγ5~τ · ~π

)
N − λvσ′(σ′2 + ~π2)−

λ

4
(
σ′

2
+ ~π2

)2
(66)



Different Choice of the Vacuum
Notice that one can propose other choice of the vacuum for instance 〈0 | π2 | 0〉 6= 0
and zero for rest of fields. Does the symmetry breaking pattern will be different then
the previous one?
Notice first that

0 6= −i〈0 | π2 | 0〉 = 〈0 | [Q1, π1] | 0〉 ⇒ 0 6= 〈0 | Q1 | 0〉. (67)

It means that Q1 can not annihilate the vacuum. Analogically

0 6= i〈0 | π2 | 0〉 = 〈0 | [Q3, π1] | 0〉 ⇒ 0 6= 〈0 | Q3 | 0〉. (68)

It means that Q3 can not annihilate the vacuum. Analogically

0 6= i〈0 | π2 | 0〉 = 〈0 | [Q5 2, σ] | 0〉 ⇒ 0 6= 〈0 | Q5 2 | 0〉. (69)

It means that Q5 2 can not annihilate the vacuum.



To every generator one can assign the Goldstone boson. One pseudoscalar (axial
broken generator) and two scalar (vector broken generator) particles.
We left with Q2, Q5 1 and Q5 3 generators. Notice that:

[Q2,Q5 1] = iε213Q5 3, [Q2,Q5 3] = iε231Q5 1, [Q5 1,Q5 3] = iε132Q2. (70)

It means that we left with the SU(2) symmetry group, but it is not vector group
anymore.
Let redefine the fields

π2
′

= π2 − v (71)

The Nucleon-meson part of Lagrangian is

gN (σ + iγ5~τ · ~π) N → gN (σ + iγ5~τ · ~π − ivγ5τ2) N (72)

The mass terms reads
−ivg

[
NLτ2NR − NRτ2NL

]
(73)



Chiral Transformation
One expects the mass term:

−
(

N′LN′R + N′RN′L
)
, (74)

Consider the chiral transformation:

−(NLL†iτ2RNR − NRR†iτ2LNL) (75)

Then we get two equations:

L†iτ2R = 1, R†iτ2L = −1. (76)

One can guess that τ2 operator (belongs to the remaining non-broken group) can be a
good candidate for the desire operator. Let propose

R = 1, L = exp
( iθτ2

2

)
= cos

θ

2
+ iτ2 sin

θ

2
(77)

Then for the θ = π we get the solution:

L = iτ2 (78)

Then we generate the analogical as before the mass term. Notice that the meson
fields transforms as follows:

Σ = L†Σ′R. (79)

However it does not affect the structure of the Lagrangian, because the meson part is
always traced!



State Transformation

Notice that
Σ′ = R†ΣL = −iτ2σ + τ3π

′1τ3 − π′2 − τ1π′3τ1 (80)

Which means that

σ → π2 (81)
π1 → π3 (82)
π2 → π2 (83)
π3 → −π1 (84)



Let Pions Be Massive

Consider the potential

V (x) = −
µ2

2
(σ2 + ~π2) +

λ

4
(σ2 + ~π2)2 + cσ. (85)

The conditions for the minimum of the potential reads

0 =
∂V
∂σ

= −µ2σ + λσ(σ2 + ~π2) + c (86)

0 =
∂V
∂πi = πi

(
−µ2 + λ(σ2 + ~π2)

)
(87)

If we choose for the minimum

−µ2 + λ(σ2 + ~π2) = 0

then we obtain that c = 0 to satisfy the first equation. It means that πi = 0, then we
get only one possible solution

0 = −µ2σ + λσ3 + c (88)

the vacume is then
0 = −µ2v + λv3 + c. (89)

at least one root in above expression.



Let σ′ = σ − v and look once again at potential, then

V (σ′, ~π) = −σ′2
(
µ2

2
−

3λ
2

v2
)
−cσ′−

c
2v
~π2+λvσ′(σ′2+~π2)+

λ

4
(
σ′

2
+ ~π2

)2
(90)

we get the mesons masses

m2
σ = −µ2 + 3λv2 = 2µ2 − 3

c
v

(91)

m2
π = −

c
v

(92)

Notice that if one assumes that vacuum expectation v > 0 then for c < 0 pions and
sigma have nonzero masses, assuming that exists c...



cσ =
1
2

Tr
[

Σ + Σ†
]

(93)

The full lagrangian has the form

L(x) =
1
4

Tr
[
∂µΣ∂µΣ†

]
+ NLiγµ∂µNL + NR iγµ∂µNR − gNLΣNR − gNR Σ†NL

+
µ2

4
Tr
(

ΣΣ†
)
−

λ

16
Tr
(

ΣΣ†
)2

+
c
2

Tr
[

Σ + Σ†
]
. (94)



It is interesting to see how transforms (under SUV (2)) the new, pion mass generating
term.

Tr
[

Σ′ + Σ′
†]

= Tr
[
V ΣV † + V †ΣV

]
(95)

= Tr
[
V ΣV †

]
+ Tr

[
V †ΣV

]
(96)

= Tr
[
V †V Σ

]
+ Tr

[
VV †Σ

]
= Tr

[
Σ + Σ†

]
(97)

We have obtained spectacular property, the model with the mass term (93) is still
invaraiant under SUV (2) transformations! It is not the case for axial transformations.



What about divergence of the axial current

Lagrangian Once Again

L(x) =
1
2
[
∂µσ
′∂µσ′ −m2

σσ
′2 + ∂µ~π · ∂µ~π −m2

π~π · ~π
]

+ N [iγµ∂µ − gv ] N

−gN
(
σ′ + iγ5~τ · ~π

)
N (98)

+cσ′ − λvσ′(σ′2 + ~π2)−
λ

4
(
σ′

2
+ ~π2

)2
. (99)

E-L equations for massless pion case:

0 = ∂µNiγµ + gN(σ + iγ5~τ · ~π) (100)
0 = −iγµ∂µN + g(σ + iγ5~τ · ~π)N (101)
0 = ∂µ∂

µσ + gNN
0 = ∂µ∂

µ~π + gN(iγ5~τ)N (102)



For the massless pion case on can show that the divergence of the axial current:

~Aµ = −Nγµ
~τ

2
γ5N + ∂µσ~π − σ∂µ~π (103)

is vanishing

∂µ~Aµ = −∂µNγµ
~τ

2
γ5N − Nγµ

~τ

2
γ5∂µN + ∂µ∂µσ~π − σ∂µ∂µ~π

= −igN(σ + iγ5~τ · ~π)
~τ

2
γ5N − iN

~τ

2
γ5g(σ + iγ5~τ · ~π)N − gNN~π + σgN(iγ5~τ)N

= −igN(σγ5~τ)N + N
(
~τ · ~π

~τ

2
+
~τ

2
~τ · ~π

)
N + gNN~π + σgN(iγ5~τ)N

= 0 (104)



Massive Pion Mass Case

If cσ is added to the potential. The the E-L equation for σ reads

0 = ∂µ∂
µσ + gNN + µ2σ − λσ(σ2 + ~π2) + c (105)

It means that
∂µ~Aµ = c~π = −vm2

π~π. (106)

It shows that the axial current diverges!!!



T =
fπ
mπ︸︷︷︸

pion−hadron−structure

pλ︸︷︷︸
to−get−Lorenz−Invariance

×uνγλ(1− γ5)ue

Notice that the hadronic matrix element (if axial current is universal) reads

fπ
mπ

pλ = 〈0 | Aλ | π〉 (107)



The relation between vacuum expectation value and pion coupling constant

The constant c can be related to the pion mass and the pion decay constant and fπ .
For the π → µνµ decay, the amplitude is proportional to the axial current matrix
element, which defines fπ by

〈0 | Aa
µ(0) | πa(p)〉 = iδabfπpµ. (108)

From the other hand

〈0 | ∂µAa
µ(0) | πa(p)〉 = δabfπm2

π = −c〈0 | πa(0) | πb(p)〉 (109)

Hence
fπm2

π = −c. (110)

Then the divergence of the axial current shows the PCAC form

∂µAa
µ = fπm2

ππ
a. (111)

We see that
fπ = v . (112)



It is interesting to observe that in practise the ground state is given by
the condition σ2 + ~π2 = v2

in other words σ2 + ~π2 = f 2π .



Next Lectures

I Getting the Goldberger-Treiman Formula
I Does Linear Sigma Model is really low-energy realization of the QCD?
I What are the relations between linear, nonlinear and other effective approaches?
I QCD a theory without explicit symmetry breaking terms...
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