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Abstract

Higher order correction in the ep scattering will be discussed. In particular the second
order Born correction to the electron scattering off Coulomb potential will be derived.
Various possible shapes of the charged distribution inside the proton will be discussed.
Then I will evaluate the "box" contribution to the ep scattering, assuming that the
intermediate state is given by the virtual nucleon. The theoretical results will be
compared with the model independent prediction of the higher order contribution
obtained with the neural networks. Eventually I will show the prediction of proton
radius.
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Plan of the Seminar

I Elementary Introduction
I Electromagnetic Form Factors
I The Proton Size

I Motivation;
I Disagreement between ”Rosenbluth” and ”polarization transfer” data →

TPE physics;
I The problem of the proton size?

I Electron scattering off Coulomb potential
I Point-like Coulomb potential;
I Yukawa, and exponential charge distributions, what about others?

I Neural Network Approach
I Box Diagrams
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I electron-proton interaction: the problem as old as the
quantum mechanics and particle physics;

I electron-A scattering: the most powerful tool for the
investigation of the internal structure matter and fundamental
forces;

I The experimental data seem to be more precise than
theoretical prediction;
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Before Quantum Electrodynamics
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Before Quantum Electrodynamics

I Rutherford formula, E. Rutherford, Phil. Mag., 21, 669 (1911):

dσRuth.
dΩ

=
Z2e4

16π2m2v4∞
1

sin4 θ2
=

Z2α2

4E2
1

sin4 θ2
(1)

I Schoedinger equation, solved in CMF (see: Schiff, Mechanika Kwantowa):[
−

~2

2m
∇2 −

e
r
− E
]
u(r) = 0 (2)

Hypergeometric functions, solution is given by distorted waves

e−ip·r+i(α/β) ln(2pr sin2(θ/2)) (3)

I Infinite range of the Coulomb Potential!
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Before Quantum Electrodynamics

I Dirac Equation: Dirac, Proc. R. Soc. Lond. A117, 610 (1928), ibid Proc. R.
Soc. Lond. A118, 351 (1928)

I Solution of the Dirac equation in terms of partial waves: Darwin, Proc. R.
Soc. Lond. A118, 654 (1928)

I Dirac equation with Coulomb field, atomic collision, analytic solution: Mott
Proc. R. Soc. Lond. A124, 425 (1929)

I Numerical expansion of the Mott solution: McKinley, Feshbach, Phys. Rev. 74
(1948) 1759.
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Elementary Introduction
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Kinematics, and Notation

I Elastic ep scattering:
e(p) + p(h)⇒ e(p′) + p(h′) (4)

I pµ = (E , p), p′µ = (E ′, p′), for me ≈ 0, |p| = E , p′ = E ′, M denotes the
proton mass

p · p′ = |p||p′| cos θ (5)

qµ = pµ − p′µ = h′µ − hµ = (ν, q), Q2 ≡ −q2 = 4EE ′ sin2
θ

2
(6)

τ =
Q2

4M2 (7)

ε =

(
1 + 2(1 + τ) tan2

θ

2

)−1
(8)
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Point-like Proton s = 1/2

Lint(x) = −eJ µlep(x)Aµ(x) + eJ µhad (x)Aµ(x) = −Hint(x) (9)

J µlep = ψe(x)γµψe(x), J µhad = ψp(x)γµψp(x), (10)

Tfi = lim
T→1−iε

〈h′, p′ | T
(
exp
{
−i
∫

d3x
∫ T

−T
dtHI(x)

})
| h, p〉conn.ampu.

= T (0)
fi + T (1)

fi + T (2)
fi + ... (11)

T (k)
fi = (−i)k〈h′, p′ | T

{
1
k!

k∏
j=1

∫
d4xjHint(xj )

}
| h, p〉conn.ampu.

T (k)
fi ∼ (e2)k (12)

Tfi = i(2π)4δ(4)
(
p + h − p′ − h′

)
Mfi (13)

dσ ∼ |Mfi |2 (14)
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Point-like Proton s = 1/2

Figure: Infrared Divergent (IR) contribution!
σExp = σBorn+vertex+self−energies + σsoft−photons(∆E), ∆E energy resolution of the
experimental apparatus.
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Point-like Proton s = 1/2

I Self-Energy correction, renormalized photon and electron propagators;
I Vertex correction;
I Born contribution;
I L. W. Mo and Y. S. Tsai, Radiative Corrections To Elastic And Inelastic E P

And Mu P Scattering, Rev. Mod. Phys. 41 (1969) 205.
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Point-like Proton – OPE (One Photon Exchange)

Jµlep(x) = 〈p′, s′ | J µlep(x) | p, s〉, Jµhad (x) = 〈h′, r ′ | Jhad (x) | h, r〉 (15)

For point like particle

Jµlep(x) = uelectron(p′, s′)γµuelectron(p, s)e−ix·(k
′−k), (16)

Jµhad (x) = uproton(h′, r ′)γµuproton(h, r)e−ix·(h
′−h) (17)

In the OPE (first Born) approximation:

iM(1)
fi =

ie2

q2 + iε
Jµlep(0)Jhad,µ(0) (18)

Spin averaged cross section reads

dσ
dΩ LAB

=

( dσ
dΩ

)
Mott
·
[
1−

q2

2M2 tan2
θ

2

]
, (19)

where ( dσ
dΩ

)
Mott

=
α2 cos2 θ2E

′

4E3 sin4 θ2
(20)
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Proton is Not Elementary Particle!
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Electromagnetic Form Factors

ieγµ → ieΓµ (21)

Jµhad (x) → uproton(h′, r ′)Γµuproton(h, r)e−ix·(h
′−h), (22)

Hadronic Current

I Lorentz invariant vector
I Conserved qµJµ = 0
I Hermitian, because H†int = Hint

Gamma-vertex

I

Γµ = γµF1(Q2) +
iσµνqν
2M

F2(Q2). (23)

I F1 and F2 are real!
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Electromagnetic Form Factors

Dirac (F1), and Pauli (F2) form-factors

F1(0) = 1, F2(0) = µp − 1 (24)

Sachs Form Factors

GM(Q2) = F1(Q2) + F2(Q2) (25)

GE (Q2) = F1(Q2)−
Q2

4M2 F2(Q2), (26)

where
GE (0) = 1, GM(0) = µp (27)
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OPE cross section

Finally we have obtained the well known Rosenbluth’s formula (Phys. Rev. 79, 615
(1950)):

dσ
dΩ LAB

=

( dσ
dΩ

)
Mott
·
[
G2
E +

τ

ε
G2
M

]( 1
1 + τ

)
, (28)

where ( dσ
dΩ

)
Mott

=
α2 cos2 θ2E

′

4E3 sin4 θ2
, ε =

(
1 + 2(1 + τ) tan2

θ

2

)−1
. (29)

Alternative formula:

dσ
dΩ LAB

=
α2E ′

4E3 sin4 θ2
·
[
cos2

θ

2

(
F 2
1 −

q2

4M2 F
2
2

)
−

q2

2M2 sin2
θ

2
(F1 + F2)2

]
(30)

Reduced Cross Section and Rosenbluth Separation

σR(Q2, ε) = G2
E +

τ

ε
G2
M , or σR(Q2, ε) = εG2

E + τG2
M (31)

ε is varied, and Q2 is fixed, then GE and GM are independently extracted.
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Cross section ep data – Rosenbluth separation technique

Figure: Taken from C. Perdrisat, V. Punjabi and M. Vanderhaeghen, Prog. Part.
Nucl. Phys. 59 (2007) 694.
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Electromagnetic Form Factors

Figure: Taken from K.M. Graczyk, R. Płoński, R. Sulej, JHEP (2010) 053
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Polarization Transfer Measurements in the OPE approximation

The form factors can be extracted from the Polarization Transfer data: polarized
electron scattering off polarized target, beam asymmetry measurements, etc.

EXAMPLE:

~e(p, si ) + p(h)→ e(s′) + ~p(h′, sf ), (32)

PL = −G2
M I0
(
E + E ′

)√
τ(1 + τ) tan2

θ

2
, (33)

PP = −2GEGM I0
√
τ(1 + τ) tan

θ

2
, I−10 = G2

E +
τ

ε
G2
M (34)

Hence
GE
GM

=
PP
PL

E + E ′

2M
tan

θ

2
(35)
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Polarization Transfer Measurements in the OPE approximation

Figure: Taken from W.M. Alberico, C. Giunti, S.M. Bilenky, K.M. Graczyk, Phys.
Rev. C79, 065204 (2009) 053
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Breit-Frame

Breit Frame
For each Q2 transfer there exists always the frame with ν = 0,

νB = 0, ⇒ q2 = −q2B (36)

In the elastic ep scattering it is the Central Mass frame, where

pB =
qB
2
, h = −

qB
2
. (37)

The hadronic current reads

Jµhad = χ†s′

(
2MGE (Q2), iτ × qBGM(Q2)

)
χs . (38)

In the classical electrodynamics

JNR =
(
eρNRq , µ~σ × ~5ρNRµ

)
(39)

where ρNRq and ρNRµ is the nonrelativistic (NR) charge and magnetization densities
respectively.
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Charge Distribution

e =
1
2M

∫
d3r
[
J0had
]
Breit

(r) (40)

=
1

2M(2π)3

∫
d3r
∫

d3qe−iq·r
[
J0had
]
Breit

(q) (41)

=

∫
d3rρe(r) (42)

Hence

ρe(r) =
1

(2π)3

∫
d3qe−iq·rGE (q) (43)

Indeed ∫
d3rρe(r) =

1
(2π)3

∫
d3rd3qGE (q2)e−iq·r (44)

=

∫
d3qGE (q2)δ3(q) = GE (0) = 1. (45)
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〈r2〉 of Proton: Standard textbook derivation (in th Breit frame)

GE (q2) =

∫
d3re−iq·rρ(r) = 4π

∫ ∞
0

dr
r
|q|

sin(r |q|)ρ(r). (46)

Assume that r |q| � 1, then sin(...) is expanded in the Taylor series,

GE (q2) = 4π
∫ ∞
0

drr2
1

r |q|

(
r |q|
1!
−

(r |q|)3

3!
+ ...

)
ρ(r)

= 4π
∫ ∞
0

drr2
(
1−

r2

6
|q|2 + ...

)
ρ(r) (47)

= 1−
|q|2

6
· 4π
∫ ∞
0

drr2
r2

6
ρ(r) + ... (48)

= 1 +

∞∑
i=1

(−1)i
|q|2i

(2i + 1)!

〈
r2i
〉

(49)

In the low-q2 approximation, the slope of the form factor at Q2 = 0 gives:〈
r2
〉

= − 6
dGE (qB)

d |q|2

∣∣∣
|q|2=0

= − 6
dGE (0)

dQ2

∣∣∣
Q2=0

. (50)
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Some Implications

I If ρe spherically symmetric in the BF, then at low-Q2 GE must depend only on
even power of Q =

√
Q2.

I The derivation is valid as long as |q| is low, and ρ(r) is spherically symmetric.
However, in the Breit frame there is one direction distinguished by transfer of
momentum q. It means that the ρ(r) does not to be symmetric! It seems to be
reasonable to assume that only in the rest frame of the nucleon the charge
distribution should has spherically symmetric form.

I The problem has been discussed by Kelly (Phys. Rev. C 66 (2002) 065203):
the charge, and magnetic densities have an interpretation in the rest frame of
the nucleon. However, to relate them with the Sachs form factors one needs to
apply relativistic inversion: boost the quantities from the rest frame of the
nucleon to the Breit frame. It was stressed that there is not unique relation
between the Sachs form factors measured by electron scattering at finite Q2 and
the static charge and magnetization densities. The basic problem is that
electron scattering measures transition matrix elements between states of
composite system that have different momenta and transition densities between
such states are different from the static densities in the rest frame. Furthermore,
the boost operator for a composite system depends upon the interactions
among its constitutes.
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Various Charge Distributions

I Yukawa Distribution:

ρ(r) =
1

4πr20

e−r/r0
r

,
√
< r2 > =

√
6r0, GE (q2) =

1
1 + q2r20

(51)

I Exponential Distribution:

ρ(r) =
1

8πr30
e−r/r0 ,

√
< r2 > =

√
12r0, (52)

GE (q2) =
1(

1 + |q|2r20
)2 ≡ GD(q2) =

1(
1 + q2

M2
V

)2 (53)

I Gaussian Distribution (characteristic for the harmonic oscillator models):

ρ(r) =
1(√

2πσ2
)3 exp

(
−

r2

2σ2

)
,
√
〈r2〉 =

√
3σ (54)

GE (q2) = exp(−q2σ2). (55)

26 / 30



Various Charge Distributions

Computed with
√
〈r2〉 = 0.88 fm.
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Proton re-interaction with vacuum
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Non-Relativistic Quark-Model

HNR−QM =

3∑
i=1

(
mi +

p2i
2mi

)
+

1
2

∑
i,j

V (~rij ), (56)

where ~rij = ~ri −~rj . Indexes i , j denote the number of the valence quark. In the
simplest possible model: V (~rij ) = K

2 r
2
ij and m = mu = md . It is convenient to work in

the center of mass frame CMF. Introduce the the new variables:

~R =
1
3

(~r1 +~r2 +~r3) , ~ρ =
1
√
2

(~r1 −~r2) , ~λ =
1
√
6

(~r1 +~r2 − 2~r3) . (57)

Then

HNR−QM = 3m +
~p2R
6m

+
~p2ρ
2m

+
~p2λ
2m

+
3K
2
(
~λ2 + ~ρ2

)
. (58)

At the center-of-mass frame ~pR = 0, then the dynamical part of the hamiltonian reads

HNR−QM |dynmical =
~p2ρ
2m

+
3K
2
~ρ2︸ ︷︷ ︸

first oscillator

+
~p2λ
2m

+
3K
2
~λ2︸ ︷︷ ︸

second oscillator

. (59)
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Non-Relativistic Quark-Model

The spatial wave function of the proton reads

Φ0(~ρ, ~λ) =

(mω0
π

)3
exp
(
−mω0

(~ρ2 + ~λ2)

2

)
, ω0 =

√
3K
m

(60)

The proton radius:
〈r2〉proton =

1
mω0

. (61)

Let assume that m ≈ 0.34 GeV. In the ground level there are two states: nucleon and
∆(1232). The averaged mass reads M = (MN + M∆)/2 = 1.1 GeV. In the next level
of baryons lader there are five states with averaged mass M∗ = 1.6 GeV. Hence

ω0 = 0.5 GeV. (62)

Hence

〈r2〉proton = 5.9 GeV−2 = 0.25 fm2 ⇒
√
〈r2〉proton = 0.5 fm. (63)

In reality
√
〈r2〉proton ∼ 0.88 fm.
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