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Abstract

The general concept of the neutrino factory is discussed and the fundamental
tools in accelerator physics are introduced. The beam dynamics in the muon
front end is extensively discussed with particular attention to the application
of concepts like RF phase rotation, magnetic bunch compression, bunching
and ionization cooling. Examples of front end designs based on these methods
are presented.
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the f flavor state into a neutrino with the g flavor state.
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Ly - the Maxwell Lagrangian.
Mo« - the rest mass of (a particle, pion, muon).
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after the canonical transformation.
Ky - the new Hamiltonian after the canonical transformation.
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Chapter 1

Introduction

The neutrino factory was proposed as a laboratory for precise neutrino oscil-
lation physics. In particular, the measurement of leptonic CP violation can
be addressed by neutrino factory experiments. In chapter 2 we briefly de-
scribe neutrino oscillation physics, methods of measurement in the neutrino
factory and the general concept of the machine. The theory of accelerator
physics is introduced in chapters 3, 4 and 5. The input muon beam and
definition of the muon front end are the subjects of chapter 6. Longitudi-
nal bunch manipulations such as phase rotation, magnetic compression and
bunching are extensively discussed in chapter 7. The ionization cooling the-
ory and two examples of the cooler ring design are presented in chapter 8. A
comparison of various scenarios for the muon front end design is carried out
in chapter 9. The conclusions are given in chapter 10.

The core of the thesis starts with chapter 6. The main results are: a
proposal of the front end with bunching (section 7.9) and a proposal for
front end based on the bunch-to-bucket principle (section 9.3) with cooling
ring (section 8.4).






Chapter 2

Towards a leptonic CP
violation

Neutrinos are perhaps the most interesting and simultaneously mysterious
elementary particles in modern physics. The discoveries of the neutrino os-
cillation phenomenon reported by SuperKamiokande [1], SNO [2], KamLand
[3] and many other experiments opened a new era in particle physics. The
CP violation in the leptonic sector is the next question to address in future
oscillation experiments.

2.1 Neutrino oscillation phenomenon

Experiments confirmed the mixed nature of the neutrino, which can be for-
mulated in the following way: the neutrino of given flavor state is a quantum
mechanical superposition of states with definite masses (h =c = 1):

‘Vf >= ZUfm|Vm >, (2.1)

where |v; > are flavor eigenstates, which are produced or detected via weak
interaction, |v,, > are mass eigenstates and Uy, is the neutrino mixing ma-
trix. The oscillation phenomenon happens when a neutrino produced in a
given flavor state, changes its flavor in flight towards the detector, where it
is observed with a different flavor state. The time dependence of a state can
be described by:

vi(t) >=Y e EmtU v > . 2.2
i) f

3



Then the amplitude of transformation into another flavor state is, using the
orthogonality of mass eigenstates:

< yglvp(t) >= Ze‘iEthfmU;m. (2.3)

The probability of oscillation is given by the formula [4]:

Am? t

P(f = 9) =3 [Ufnl*|Ugm|* +2Re[ 3 U UgnUpaUgycos( 2;"‘ )], (2.4)
m m#n

where the ultrarelativistic approximation was used:

By o pyy 4 T (2.5)
It is also assumed that:
Pm = Pn (2.6)
and dm2,, in equation (4) is given by:

Am?, =m2, —m2. (2.7)

The distance at which the argument of cos(aﬂ%ﬂﬂ—t) becomes 27 - is the

2F
oscillation length:
AT E

Losc = Am?2
mn

(2.8)

In the two generation case where the mixing matrix U is written:

( cosf sz'nH)’ (2.9)

—sinf cosb

the probability of oscillation from flavor state f to g is:

L
P(f—g) = sin2(20)$in2([7/r

), (2.10)

where the time was replaced by the distance L traveled by the beam.



2.2 CP violation

In the three generation case the mixing matrix U - (the Maki, Nagakawa,
Sakata matrix [5]) can be written in the following way:

1 0 0 C13 0 8136“ C12 S12 0
U= 0 Co3 S923 0 1 0 —S12 C12 0 (211)
0 —s93 co3 —s13€”  sp3  c13 0 0 1

where s(c);; is sin(cos)8;;. The presence of the phase ¢ different from zero
introduces a CP violation phenomenon in the neutrino oscillation. The CP
violation in the quark sector is described in a similar way using the CKM
matrix.

In the case of neutrino oscillation the CP violation means:

P(f—g)#P(f—9) (2.12)

To observe the CP violation two experiments need to be performed with
different initial neutrino beam polarities.

It was proposed to produce such beams in various ways:
1. Conventional neutrino beams based on pion decay [6]:

protons — target — m* —charge selection in the horn and focusing — v, or
v,
u

2. Neutrino beams from [ decay of radioactive ions (a ”beta beam”) [7]:

protons — target —creation of ion beam — stacking — acceleration — ion
decay ring — v, or 77,

3. Neutrino beams from muon decay (a neutrino factory) [8, 10, 9J:

protons — target — 7% — creation of u or = beam — acceleration — u
decay ring — v, v, or v,V



2.3 Conceptual idea of a neutrino factory

We shall focus on the concept of a neutrino factory.

The neutrino factory is a complex, in which a muon beam is created and
accelerated to high energy (typically 20 - 50 GeV). The muon beam at the
final energy is then injected into a storage ring with long straight sections
(about 60 % of the ring circumference) pointing towards far detectors located
from hundreds to several thousands km (in present proposals [12]) from the
decay ring. The use of a decay ring instead of a straight decay channel can
be immediately understood, realizing that muons accelerated to momentum
20 GeV/c have a decay length yer = 126 km. The geometry of the decay
ring favors a concept of two baseline experiments run at different distances
at the same time.

Muon decay pu* — e* + v.(%) + v,(v,) is one of the best measured
processes in particle physics. Neutrino beam characteristics can be known
with great precision from the distribution of neutrinos, which in the muon
rest frame is given by [9]:

2

e = (@) + Pfi(x)cost) (2.13)
where z = 2E,/m,,, P is the muon beam polarization in the decay ring with
respect to the beam line and # is an angle between the neutrino momentum
vector and the muon spin direction. The sign depends on the beam polarity,
7.” for ut and "+ for p~. The polarization of the muon beam depends
on details of the design of muon lines. It can be measured precisely by
observation of electron or positron polarization coming from p* decay in the
decay ring. The table 2.1 gives the flux functions for electron and muon
(anti)neutrinos:

folz) fi(z)
v, | 22%(3 — 2z) | 22%(1 — 2x)
ve | 122%(1 — z) | 122%(1 — x)

Table 2.1: Flux functions for electron and muon (anti)neutrinos.

Precise information on the neutrino beam contamination and the flux
is a great advantage of the neutrino factory in comparison to the conven-
tional neutrino beams from 7 decay, where flux uncertainties are governed
by limited knowledge of hadron production cross sections.



In the laboratory frame the neutrino beam is contained in the cone along
the decay line. The angle of the cone depends on the parameters character-
izing the boost from the laboratory frame to the muon rest frame. The cone
angle is proportional to 1/v,, which dictates a high muon storage energy.
Another motivation to store muons at high energy in the decay ring is a fact
that the divergence of the muon beam, which in addition contributes to the
neutrino cone angle decreases with energy. Finaly, the neutrino interaction
cross section increases with energy.

2.4 ”Golden” observable in a neutrino fac-
tory

The basic observable in the experiment with a neutrino factory beam can be
defined in the following way. Let’s assume, that we store the p™ in the decay
ring first. We produce a beam with electron neutrinos and muon antineu-
trinos. If electron neutrinos oscillate into muon neutrinos, we shall see, due
to charge current interaction, ;= in a far detector. The muon antineutrino
from the same beam, which did not change the flavor, would produce p* in
a far detector. The oscillation signature is therefore an observation of the
so called "wrong sign muons” in the far detector with respect to the sign
of stored muons in the decay ring. This is called the ”golden” channel. A
neutrino far detector, a multi kT device, has to have a muon charge identifi-
cation capability. To observe the CP violation we have to perform two runs
with positive and negative muon beam polarities. The sensitive observable
is the ratio:

= M) Nole) = N /No(e?)
cp = - — (2.14)
N(p=)/No(e™) + N(u*)/No(e*)

where the signs depend on the beam polarity, N(u*) is the number of wrong
sign muons and N (e*) is the number of expected charge current events cre-
ated in the far detector by electron (anti)neutrinos in the absence of oscilla-
tions.

It can be shown, that it is possible to expand the formula for the proba-
bility of oscillation in vacuum with small parameters:

A13L AlgL

P(ve(7.) = v, (1)) = s3351n°201381n( ) + C335in°20195in( )
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+Jcos(£d — k)AL gin (Al (9 15)

where A;; = AQ—ZEL' and J = c1351n201951n205351n26013 is equivalent to the
Jarlskog determinant in the quark sector. We can see that the CP odd term
in the above formula vanishes if the Jarlskog determinant is equal to zero.

According to current experimental knowledge s;3 is very small, but all
other parameters are comparable with unity. This means that observation
of CP violation will be impossible if this parameter is much smaller than
the Chooz limit. Both s;3 and CP violating phase 6 can be studied in the
neutrino factory simultaneously but the degeneracies in solution space must
be resolved. This is believed to be possible with more than one baseline
and the study of other channels than the ”golden” channel. It should be
mentioned that ”matter effect” is asymmetric with respect to beam polarity,
because interaction is different for (anti)neutrinos and matter in the Earth
contains no antiparticles. The MSW effect has to be taken into account for
a CP violation search in the leptonic sector [12].

2.5 Building blocks of a neutrino factory

The neutrino factory facility requires several accelerator and particle physics
installations.
The requirements for a neutrino factory are the following:

e A proton driver, with multi-MW proton beam power and a specific
beam time structure to meet the requirements of injection into a decay
ring. This basically means that muon beam has to be shorter than the
revolution time in the decay ring. The pulse duration of a linac in order
to produce enough intensity is in the ms range. A short proton pulse
compatible with decay ring operation needs proton accumulation. Ap-
plication of H~ ions in the linac, followed by charge exchange injection
into an accumulator ring was proposed as a solution for accumulation.
Typically, several hundreds of turns can be injected into an accumula-
tor ring. Accumulation is usually followed by bunch compression [14],
in order to produce the short final proton bunches (a few ns) needed
at the target, which is necessary to limit the longitudinal emittance of
the muon beam produced by 7 decay.

At CERN there are several schemes:
1. The SPL (Superconducting Proton Linac) option [13]:



H~ linac ( SPL ) to 2.2 GeV — proton accumulator ring — proton
compressor ring — target.

2. The RCS (Rapid Cycling Synchrotron) option [14]:

H~ linac to 150 MeV — proton accumulation in the synchrotron — ac-
celeration and compression in a synchrotron or a chain of synchrotrons
— target.

The proton driver is a separate accelerator facility which can be used
for other purposes than neutrino production.

A target system and pion capture including pion decay channel.

The target is a difficult part of the machine. It has to operate with 4
MW proton beam power and absorb a minimal pion flux. The com-
promise between pion production and reabsorption dictates the target
size to be one to two interaction lengths in the longitudinal dimension
and about 1 cm in the radial one. This means that energy deposition
in this kind of target is beyond the specifications of present proton tar-
gets. There exist several proposals and we mention two of them:

1. Liquid mercury jet target [15].

2. Tantalum beads cooled by gaseous or liquid helium [16].

There are several proposals for the pion capture system:

1. A 10-20 T solenoid located around the target followed by an adi-
abatic section, where the field is slowly reduced in the decay channel
(17, 18].

2. A target installed in the magnetic horn (operating at 50 Hz) matched
to the decay solenoid with constant solenoidal field in the decay chan-
nel [19].

3. A system consisting of several targets in magnetic horns followed by
an alternating gradient funneling system [41].

Issues related to activation problems and a primary proton beam dump
are still under discussion.

Muon front end.

This part of a neutrino factory captures muons coming from the decay
channel and prepares the muon beam for acceleration. The manipula-
tion used here can be: bunching, debunching, phase rotation, magnetic
compression and ionization cooling. Problems of muon front end are
addressed in the rest of this work.



e Muon accelerator chain. The short muon life time imposes a very fast

acceleration. A conventional synchrotron cannot be used because of
the limited speed of magnetid field ramp and linear acceleration can be
used only to a limited extent because of the cost. Two proposals can
meet the goal:
1. Application of the recirculating accelerators, where linear accelera-
tion is followed by families of RF free arcs, one arc for every energy,
which bends the p beam back into a linac to enable recirculation [20].
The scheme is limited by the number of arcs which is typically 4 to 5.
2. The use of the FFAG ( Fixed Field Alternating Gradient) [21] syn-
chrotrons, where the magnetic field is constant in time, but there exist
stable orbits over a large energy range. The limitation here lies in the
size of the magnets.

e Muon decay ring.
The geometry and length of the decay ring is a compromise to achieve 2
long straight sections pointing towards far detectors being a large frac-
tion (60 %) of the ring circumference and the strength of the magnetic
field in the arcs. The CERN ring is 2 km in circumference [22].

e One or two far detectors with multi-kT mass and muon charge identi-
fication capability.

The possible layout of the neutrino factory can be seen in Fig. 2.1.

10
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Figure 2.1: The conceptual layout of the CERN Neutrino Factory.
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Chapter 3

Charged particle dynamics in
an accelerator

The purpose of this chapter is to introduce the calculational tools needed
to describe single particle dynamics in an accelerator. We shall explain the
description of magnetic fields used to guide and focus a charged particle
beam.

3.1 Lagrangian and Hamiltonian approach to
dynamics

We start with the Maxwell Lagrangian of a charged particle with mass my
in a classical electrodynamic field [23, 24]:

-2
Ly = —mpc®y|1 — 2—2 + g?g— ep. (3.1)

The canonical momentum p; is defined as:

oL -
= =t A
or c
where
P = ymofe,

13



is the mechanical momentum as can be easily checked by the explicit cal-
culation. The dynamical problem can now be addressed by solving Euler-
Lagrange equations:

d oLy 0Ly

dt or or

It is nevertheless very convenient to go to the Hamiltonian description of

mechanics as it is common in many physical problems. The Hamilton descrip-

tion simplifies the equations of motion and introduces a powerful concept of

phase space dynamics. The transformation from Lagrangian to Hamiltonian

description is performed by Legendre transformation. Without going into

details, we observe, that the Maxwell Hamiltonian is equal to total energy
and is related to canonical momentum in the following way:

Har = 70 — Lar = \/ mict + P22 + e¢ = Eiy,

M = \[miet + (7, — SA)2 + 6.

=0.

The dynamical problem is now solved via Hamilton equations:

. OHum

= 2
& apci ’ (3 )
9w
P =5~ (3.3)

where i=x, y, z.

3.2 Definition of betatron and synchrotron
motion

Now we will make several assumptions useful to simplify the dynamics of a
charged particle in an accelerator.

Firstly, we will treat a magnetic field as constant in time, which is ap-
proximately valid for all existing accelerators. The magnetic field is slowly
changing with time, orders of magnitude longer than betatron period; in
other words betatron frequency is much higher than the revolution frequency,
which is usually orders of magnitude higher than the repetition rate - the

14



frequency of magnetic field change. It is interesting to note that in the ac-
celerators constructed according to a fixed field alternating gradient (FFAG)
principle the magnetic field is constant in time exactly by definition.

The standard accelerator is built with a symmetry plane, which is usu-
ally a horizontal plane. The stable closed orbit lies in this plane (called the
median plane). The charged particle characterized by a special set of coor-
dinates moves on the closed orbit indefinitely. All other particles with small
deviations in position and momentum from the reference particle perform
stable oscillations around the reference orbit. Existence of stability of small
oscillations is a subject of linear optics. Oscillations in the transverse planes
are described by the relative deviation 0x of distance from the reference parti-
cle and the component of the momentum p; perpendicular to a closed orbit.
They are called betatron oscillations. The oscillations in the longitudinal
plane (0E, dt) in the presence of fields in RF (radiofrequency) cavities, which
do vary with time are called synchrotron oscillations. In addition a particle
with different energy moves on a different orbit in a bending magnet. This
effect is described by the dispersion function. We note, that in the case of a
linear accelerator (linac), the reference particle moves in a straight line, but
magnetic fields still have a median symmetry plane.

3.3 Accelerator system of coordinates

It is useful to introduce a curvilinear coordinate system to treat the dynam-
ics in a circular machine or a transfer line containing chicanes. In addition,
we will break a paradigm with time being an independent coordinate. In
a particular problem of the particle motion in an accelerator lattice, one is
more interested in beam properties changing from one sector to the other,
than in real time evolution. In addition, time or rather time difference with
respect to a reference particle (equivalently RF phase or phase difference with
respect to a synchronous particle) is used as a coordinate canonically con-
jugated to energy difference with respect to the synchronous particle. This
suggests treating the curvilinear abscissa s of a closed orbit as an independent
coordinate.

We shall transform the dynamical problem in two steps using canonical
transformations. Before going into details, let’s assume that the RF cavities
have been turned off, which corresponds to a beam stored at a fixed mean en-
ergy without acceleration or passage through a transfer channel. Mathemat-

15



ically it corresponds to setting the scalar potential in [3.1] and all following
formulas to 0. We will turn on RF cavities later. We define an accelerator
system of coordinates in the following way: the position of a reference parti-
cle on its closed orbit is established once its position s with respect to some
initial value is given (for example from the injection point). To every point
on a closed orbit we can attach an orthogonal system of coordinates shown

in Fig 3.1.

y

Figure 3.1: Accelerator system of coordinates.

3.4 Curvilinear system of coordinates

We shall now transform the Maxwell Hamiltonian to a Courant-Snyder Hamil-
tonian, which describes a motion in an accelerator system of coordinates. A
canonical transformation is a change of generalized coordinates which con-
serves the Hamiltonian form of the equations of motion. It can be shown
[24], that it is automatically fulfilled if the following relation holds:
) . dF

Piclic — H = PicQic — K + P (3.4)
where (g;, p;) and (Q;, P;) are old and new generalized coordinates, and H
and K are old, and transformed Hamiltonians, respectively. The generating

16



function F is a function of the phase space coordinates with continuous second
derivatives. Let us introduce the unit vectors (ui,u5,u3) in the accelerator
frame (x,y, s) respectively. Following relations from basic geometry holds:

- dry(s
sy = 72 (35)
- dui (s .
k(s) = — ;s( ) _ —ku(s), (3.6)
Uy = Uy X Uy, (3.7)
diy
d—; = kg, (3.8)
iy
= =0, (3.9)

where 7, is a position vector of the reference particle calculated from the
center of the machine. The curvature of the reference orbit %k is related to
the radius of curvature p, the magnetic field in the bending magnet B and
momentum p in the following way:
p=1=0
p cp
We define a generating function to perform the canonical transformation
to the curvilinear coordinate system:

(3.10)

F = —pu(75(s) + zun(s) + yus(s)) (3.11)

We can define a new set of canonical momenta related to the new coor-
dinates with the help of F' [25]:

Dsc = _g = _;(1 + ]{5(8))’1?1(8), (312)
oF

Pzc = _% = D¢ 2(3), (313)
oF

Pyc = _a—y = pu3(s). (3.14)



The generating function F given by equation 3.4 is not the explicit func-
tion of time. This suggests that we can transform the Hamiltonian expressing
all old coordinates with new ones. This defines a new Hamiltonian Hg:

s e e e
Hr = \/777%(34 + CQ(W - EA5)2 + ¢ (pz — EA””)2 + c(py — EAy)2-
(3.15)

3.5 Time as an independent variable

We have transferred the Hamiltonian into the curvilinear coordinate system
but time is still an independent variable. We can use one of the Hamilton
equations:

. OHr
 Opse

to transform Hamilton equations to a new form with s as an independent
variable:

(3.16)

o 8psc ! _apsc

= = 1
Pre =5 T = o (3.17)
! 3psc ' apsc
yc
’ 8psc ’ apsc
F

If we treat —p,. as a new Hamiltonian function, the structure of equations
is conserved.

3.6 Courant-Snyder Hamiltonian

We note, that from the Maxwell Hamiltonian the Lorentz force can be derived
which acts on a particle with elementary charge immersed in the electromag-
netic field:

-

F, =e(E +7x B) (3.20)



where E and B are electric and magnetic field vectors respectively, and ¥/ is
the particle velocity. Assuming that we treat a part of a machine without RF
and electrostatic devices, we set E = 0. Then from a vector multiplication
law we deduce, that any static magnetic field cannot change particle energy.
Then we can write the Courant-Snyder Hamiltonian (C-S) assuming further
change of coordinates acting on canonical momenta:

Pe = Pe/P (3.21)

Finally we can write the Courant-Snyder Hamiltonian [25], which de-
scribes the single charged particle dynamics in a static magnetic field in
accelerator physics:

__e _ — (P — S A2 — (py — —A,)?
Hes =~ A,(1+1) (1+m~)\/1 (pe = SA — (5= A, (322

The structure of the last formula is rather complicated and the Hamilto-
nian equations derived from it, describe in general nonlinear dynamics with
multidimensional coupling. Its solutions are beyond the possibilities of ana-
lytical methods and can be only approximately treated by numerical methods
generally known as tracking.

3.7 Magnetic field expansion

We shall introduce several simplifications in order to achieve approximate
equations of motion, which can be solved analytically. The magnetic poten-
tial A and the magnetic induction B are connected by:

B=VxA (3.23)

It can be shown that in a machine with median (horizontal) plane sym-
metry, the longitudinal component of the magnetic induction on the median
plane vanishes. In addition, one usually treats the magnetic field in the ac-
celerators for small particle oscillation around the closed orbit to be purely
transverse and vary stepwise along s coordinate in the so called hard edge
approximation. This is in particular the way the machine is designed in a
first stage. More complicated field patterns are then treated as small pertur-
bations and finally a multiparticle tracking with high statistics is launched
in further steps of the machine study.
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The magnetic field for the median plane symmetry machine within the
hard edge approximation is described by the series expansion around a closed
orbit: .

%Bz = Ky +mzy + O(3) (3.24)

iBy =k+ Kz + 1m(x2 —4%) + 0(3) (3.25)
cPo 2
where py is the momentum of the reference particle. We call the K and m
the quadrupole and sextupole field strength and remind that the curvature k&
is related to dipole field via equation 3.10. We have omitted all components
of skew magnets, where coils are rotated with respect to the closed orbit.
They are used only in very special applications in the accelerator technol-
ogy ( for example for coupling compensation).We have also omitted so called
geometrical terms which are proportional to the curvature k. They are of
importance only in the very strong bending magnets (with big deflection
angle). As usual in physics, the notion of ”big” and ”small” remains to be
carefully studied case by case. The B, component only enter via terms which
we have already assumed to omit. We shall treat it explicitly in the machine
containing solenoids, which is an exception to median plane symmetry ma-
chines. One can check using equation 3.23, that the magnetic induction given
by formulas 3.24 and 3.25 can be derived from magnetic potential:

e 1 1 1
— Ay = (1 +kx)+ -K(@y*—2%) — ~m(2® - 325°) + O(4)  (3.26)
cPo 2 2 6

In general one can always use the gauge invariance to make other magnetic
potential components to vanish in the case of the median symmetry plane
machine.

3.8 Paraxial approximation

The next simplification is the paraxial approximation. We shall simply as-
sume in equation 3.21 that the denominator is large compared to the numer-
ator. The physical meaning of this assumption is that particles have small
transverse momentum components in comparison to the longitudinal one.
We can make the following substitution in the C-S Hamiltonian:
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e e 1 e 1 e
1- - —A,)2 - —— A2 = 1—=(p,— —A) - =(p, — —A4,)*
\/ (P2 p ) (py p y)? = 2(p p ) 2(py p y)
(3.27)
In addition to the use of the field expansions around the closed orbit, we

introduce the relative momentum deviation:

€
== - —(1-= 3.28
cp  cpy+0p Cpo( po) (3.28)

where dp = p — py. It is important to mention, that the momenta in the pre-
vious formula are mechanical momenta not to be confused with generalized
momentum.

21



22



Chapter 4

Transverse dynamics

In this chapter we shall use the C-S Hamiltonian, previously derived, to write
the linear equations of motion which describe transverse dynamics. We shall
introduce the matrix formalism, the condition for stability and the conserved
quantity called emittance. Then, we mention the formalism to describe the
motion of a particle with momentum deviation. Finaly, the linear dynamics
in a solenoidal channel is discussed.

4.1 Hill equations

It can be shown that the C-S Hamiltonian simplifies to the second order
Hamiltonian:

1 16p 6p 1 1 1 1

He=—=— —— — —kx — —K(*—2%) + k%2 + —p + ~p? 4.1
from which one can derive the transverse equation of motion called the Hill
equation for a horizontal and a vertical plane respectively:

" 9 5p "
z +(K+Ek)z=—k y —Ky=0 (4.2)
Po

We shall study the solutions of these equations and their implications in
the following section.

The Hill equations are very similar to harmonic oscillator equations. The
only difference is that coefficients k, and k are functions of s. In the hard
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edge approximation we treat them as step functions. For a machine built of
periodic structures of length L:

ky(s) = ky(s+ L) K(s)=K(s+ L) (4.3)

A circular machine has at least a period equal to its circumference:

ky(s) = kz(s+ C) K(s)=K(s+C) (4.4)

4.2 Matrix formalism

Let us first assume that f}—’; vanishes, which mean that we study the particle
dynamics without momentum deviation with respect to the reference particle.
The solution of all second order equations similar to the Hill equation can be
expressed in the matrix formalism:

(§)=(§ g)(ig):MX (4.5)

where matrix M is usually called the transfer matrix. It expresses the change
in the position z and angle =’ after a passage through the magnetic element
described by the matrix M from its entrance values (zg, ). The matrix
describing a set of several magnetic elements can be constructed by successive
matrix multiplication of matrices describing single elements. Finally, one can
construct the one turn matrix for circular machines. It can be shown [25]
through the analysis of eigenvalues of M, that stability of the machine in
question is achieved only when [25, 26]:

Tr(M)| < 2 (4.6)

By the stability condition we understand that after N turns all elements
of the machine transfer matrix M* remain bounded when N goes to infinity.
The matrix M can be parameterized [25] in the following way:

M= ( cosp + asing Bwsmu. ) (4.7)
— Yz SINU COS[L — QpSINYL

where condition 8,7, — a2 = 1 is the other way of expressing the fact that
matrix M has a determinant equal to one. The last result is well known in
the theory of ordinary differential equations, where unity of the determinant
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called Wronskian expresses the lack of the term proportional to the first
derivative of z (z') in the equation, in other words the lack of the dissipative
term. The matrix M in the parameterization given by equation 4.7 is called
the Twiss matrix in the accelerator physic literature.

4.3 Beam ellipse and invariant of motion

We shall now give a meaning to the coefficients o, 5, and ~,.
The solution of the Hill equation can be postulated in the following way

z(s) = ay/ Bu(s)cos(p(s) — o) (4.8)

The cosine term in the above equation is very similar to the cos(wt)
term in the solution of the harmonic oscillator problem. We can see that
i(s) plays a similar role to the angular frequency w. In particular, when
u(s) grows by 27 the particle motion performs an oscillation by one period
around the closed orbit. A major difference with the harmonic oscillator lies
in the amplitude term /€83;(s), which is a function of s. The beta function

Bz(s) defines the envelope of the beam. In particular, the maximum radius

of the beam vary as:
Tmaz(s) = ay/ /B:E(S) (49)

After substitution of the Ansatz 4.8 into the Hill equation, we can make
a connection with the Twiss matrix. The way we introduced the coefficients
was not arbitrary. The detailed studies [25] show that §, and p in the
Twiss matrix of the whole machine corresponds to the equation 4.8. The
exact meaning is as follows: the parameterization of the one-turn matrix
corresponds to the value of 3, function in the point we start the calculation.
The phase p corresponds to the total phase advance in the machine. The
value p in equation 4.8 was chosen to set the initial conditions. We shall give
the relations between the parameters without proof. For details see [25, 26].

1, 1+ a? 1
_ _ = — T = —d 4.10
@ 255" " o K /C B s ( )

where the integration is performed around the circumference C' of the ma-
chine. The tune of the machine is:
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Q= % (4.11)

Tune corresponds to a number of betatron oscillations performed by the
particle during one turm around the machine.

Now we shall comment about the constant a in the equation 4.8. Its form
suggests that:

a? = ﬁi [:U2 + (o + ﬁxzv')Q] = 7,2° + 20218 + Bpx’? =€ (4.12)
T

The last formula is known as the Courant-Snyder invariant. It is an
ellipse equation, in which the area (equals to me) remains constant in the
transfer line or in the storage ring, where quantum excitations ( emission of
the synchrotron radiation, decay, intrabeam scattering, interaction with the
residual gas, etc.), nonlinear magnetic fields and couplings can be neglected.
Conservation of the Courant-Snyder invariant e is the 2-dimensional ana-
logue of the Liouville theorem, which tells us about the phase space volume
conservation in the Hamiltonian systems. The applicability of the concept of
emittance can be understood in the following way. The ellipse enclosing the
beam is changing from point to point in the machine, but its area remains
constant. The parameters describing the shape and orientation of the ellipse
in the phase space (ay, 8;,7,) are instead continuously evolving usually in
the periodic way. The exact meaning of the parameters describing the ellipse
can be deduced from equation 4.12 and some of them are shown in Figure
4.1.

The emittance conservation is one of the principles of accelerator physics.
Together with all linear beam parameters (o, 5z, Yz, #t) in spite of their ap-
proximate notion serves as an extremely fruitful description tool widely used
in the subject. It is important to note that approximations used to derive
the linear theory are extremely successful in almost all existing machines.

4.4 Orbit dispersion

We shall now briefly describe the motion of a particle with momentum devi-
ation with respect to the refence particle. The only term, which has survived
after linearization is kmfj—ﬁ. This term describes the chromatic change of the
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beam

Figure 4.1: The orientation of beam ellipse in the phase space parameterized

by Twiss functions: a = /€y, b = \/€/Bz, ¢ = \/€/Vz, d = Ve€B;. The

upright ellipse corresponds to a;, = 0.

orbit in the bending magnets due to the different radius of curvature of the
particle with the momentum deviation. In this approximation we do not take
into account changes in the focusing properties. The general solution of the
inhomogeneous Hill equation:

n 5
z + (K +k)z = P (4.13)
Dbo
can be described in the matrix form:
T C S Di Zg
o | = cC S DV g (4.14)
o 0 0 1 2
Po Po

We can assume, that a particle has a zero betatron amplitude and try
to find a dispersive orbit for that particle - the closed orbit for the particle
with momentum deviation. It can be shown that dispersion, which is defined
as a deviation of the dispersive orbit from the closed orbit of the reference
particle normalized to the momentum deviation:

p=122 (4.15)

op
Ppo
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fulfills the equation:

D' +(K+k)D =k (4.16)

The equation shows a similarity to the driven harmonic oscillator. We
mention without proof the solution for the periodic dispersion:

D(s) = L(S) /S+L MCOS( (s) — u(o) + 1Q)do (4.17)
-~ 2sin(1Q) Js p(o) a s '
where the integration is performed along the length of a periodic structure
L, which can be the whole circumference of the machine.

4.5 Example: FODO lattice

As an illustrative example we shall explore the stability of the FODO channel,
the focusing system by far the most common among accelerator applications.
The name stands for F - focusing in quadrupole with positive K, O drift
with eventually bends or other insertions, D - defocusing in quadrupole with
negative K. A quick look at the Hill equations shows the alternating function
of quadrupole for horizontal and vertical motion respectively, which can be
seen by different signs in the terms proportional to K. The famous Alternating
Gradient (AG) principle is exactly an analogy of optical focusing in light
optics, where the combination of focusing and defocusing lenses creates a net
effect of focusing in the horizontal and the vertical plane, simultaneusly. The
only difference is that the ”magnetic lenses” in the charged particle optics -
the quadrupoles are focusing in one plane and defocusing in the other, but
alternating the sign along the beam line produces a net focusing. We shall
define a few parameters:
eg 1

K= cpo = Ki,
where K is the focusing strength of a quadrupole (the same coefficient as in
the Hill equation), g = %lil is the field gradient and f is the focal length of the
quadrupole. The matrices, which correspond to drift and thin quadrupole
are of the following form respectively:

(4.18)

28



w-(05) (L) e

f
where f is positive for a focusing lens and negative for a defocusing one. The
matrices, which correspond to thick quadrupoles focusing and defocusing

respectively, are given by:
cos(l4/|K|) \/ﬁsm(l\/\lﬂ)

—\/Tlﬁsin(l,/\K\) cos(l4/|K) (4.20)
cosh(l\/| K L_sinh(l\/|K
= (Iy/IKT) 7w (I4/| K1) 21)

\/T?lsmh(l\/ﬁ) cosh(l\/@)

We shall now use thin lens approximation to derive the stability condi-
tion for the periodic FODO lattice. We cut the lattice in the middle of the
focusing quadrupole, which is represented by the matrix with focal length
2f. In this way we study a symmetric cell until next half of the focusing
quadrupole. We calculate the trace of the transfer matrix evaluated by suc-
cessive multiplication of matrices representing in the sequence: half of fo-
cusing quadrupole, drift, defocusing quadrupole, drift and half of focusing
quadrupole, see Fig.4.2.

focusing defocusing focusing
drift drift
L L
A

of B 2f
Figure 4.2: The sketch of elements in symmetric FODO cell.

We evaluate now the trace of the full transfer matrix and after using the
Twiss parameterization 4.7 we can express it in the very useful form:
L? ) L
cosp =1 — 37 sin(p/2) = i (4.22)
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The condition for stability 4.6 is equivalent to the condition, that u has
to be real. The last statement is equivalent to the condition: the focal length
must be longer than the half distance between two lenses. It is interesting to
note that taking into account the variation of the parameters with momentum
and assuming a constant magnetic field the FODO channel is always stable
for particles with higher energy than the reference particle. For particles with
higher energy (momentum) the line is just a FODO channel with a different
k (f in thin lens approximation). The phase advance per cell diminishes with
momentum. For lower momentum particles one can easily derive the formula
for the maximal relative momentum deviation accepted by the channel:

op > sin(p/2) — 1 (4.23)

Po
It is important to note that the beta function goes to infinity near the limits
of stability. Then the real acceptance limit has to be more restrictive than
4.23. For the same reason, the stability on the higher energy side is limited
too. An example of the FODO cell including dipoles put in the middle of the
drift is given. We treat quadrupoles first in the thin lens approximation and
then find the thick quads solution with the same horizontal phase advance per
cell. We make the linear beam dynamics calculation in the framework of the
BeamOptics code developed at CERN [27]. The optical functions calculated
with thick and thin lens models are shown in Fig. 4.3 and 4.4, respectively.
The difference in the shape of the beta function is due to the localization of
the effect on the beam in the thin lens, which works as a point-like kick. The
parameters of the cell are listed in table 4.1. They are very similar, but not
identical.
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Figure 4.3: The optical functions in the FODO cell calculated in thin lens
approximation. The red, blue and green lines are /3,, 8, and D functions,
respectively.

B [m \/ \/ D [mi
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Figure 4.4: The optical functions in the FODO cell calculated using thick
quadrupoles. The red, blue and green lines are 3;, 8, and D functions,
respectively.
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thin lenses | thick lenses
Qy 0.25 0.25
Qy 0.232 0.232
B in the middle | 4.504 m 4.359 m
of F-quad
By in the middle | 0.948 m 0.981 m
of F-quad
D in the middle | 0.644 m 0.637 m
of F-quad
cell length 2.828 m 2.828 m
quad length - 0.4 m
dipole length 0.6 m 0.6m
bending per cell | 7/9 rad 7/9 rad

Table 4.1: Parameters of the FODO cell in thin and thick approximations.
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4.6 Linear optics in a solenoidal channel

In general the coupling between horizontal and vertical motions can be cre-
ated by a non vanishing solenoidal magnetic field component and rotated
quadrupoles. In particular these effects are always present in the real machine
due to field errors and misalignments as small perturbations. In some cases
the effects of coupling can be rather strong due to the presence of solenoids (
for example in the detectors in colliders or electron cooling devices). In very
special applications we can find solenoids as permanent focusing elements
in the low energy sources and transfer lines. This is exactly the case of the
solenoidal designs for the neutrino factory muon front end, which we shall
study in the next chapter. Because of that we shall pay some attention to
this kind of focusing to prepare the ground for applications.

In the presence of coupling the linear optics is described by 4 x 4 transfer
matrix. To simplify the problem we shall perform a change of coordinates
to treat the problem in 2 x 2 formalism. We shall treat a linac focused by
solenoids. The transverse magnetic field expressed to first order in x and y
can be described by:

1 1
By = —5uB(0,0,5) B, =—5yB;(0,0,5) (4.24)

where B! = dd%. The B, component of the field is a function of s and
varies with the distance from the axis in higher order in x and y.

We shall now follow the derivation of [28] or [29]. Similar results including
the method to calculte the 4 x 4 transfer matrix can be find in [30]. The
linearized equations of motion can be written in the following way:

z —S(s)y — %S'(s)y =0 (4.25)
y + S(s)a + %S'(s)x ~0 (4.26)

where S = ; B,. Note a high degree of symmetry in equations 4.25 and
4.26. We shall use this symmetry to transform to decoupled equations. We
introduce a rotation in complex coordinates:

R = (z + iy)e i) (4.27)
By introducing the rotation angle specified by the formula:
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bu(s) = % [ s(:)az (4.28)

we can end up with decoupled equations:

n 1 n ].
T+ Z52(5)53 =0 g + ZSQ(s)g =0 (4.29)

where the new coordinate system (Z, ) ( sometimes called the Larmor frame)
rotates around the laboratory system (z,%y). We note the similarity of equa-
tion 4.29 with the Hill equation. In particular we shall use the beta function
formalism similar to the decoupled case assuming the rotational symmetry
of the beam. Precisely speaking the beta function in the linac focused by
solenoids is exactly the same as the horizontal beta function in the linac
focused by focusing quadrupoles ( with the same sign of k ) replacing k by
15%(s) in the hard edge approximation or by ﬁ = 15%(s)Lyo in the thin
lens approximation, where L, is the length of the solenoid.

In machine with coupling, the off-momentum orbits can be described by
the horizontal D, and the vertical D, dispersion functions. The necessary
matrix formalism to descibed them is a generalization of 3 x 3 formalism (

see paragraphe 2.12 ) to 5 X 5 one.

4.7 Example: FOFO lattice

With analogy to the FODO cell one can consider a cell of symmetric channel
focused by solenoids giving it the name FOFO cell. This kind of channel is
focusing in both planes simultaneously. This fact can be used to avoid large
amplitude oscillations of the beam to provide a smooth beta function with
small value, which can be used to transport low energy and large emittance
beams. These properties make solenoidal channels very useful in the design
of particle sources and beam cooling devices. Using defined in the previous
section the focal length of the solenoid, one can derive expressions for the
betatron phase advance in the FOFO cell consisting of half of the solenoid,
drift and again half of the solenoid.

L 1 /L
cosp=1-— BY; sin(p/2) = 3\ 7 (4.30)

The stability again, as in the FODO case, reduces to the condition of u to
be real. It is remarkable to note that the cell is stable for higher momentum
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and the stability of lower momentum is expressed in exactly the same manner
as for the FODO:

? > sin(p/2) — 1 (4.31)

The comments already mentioned for the FODO about more strict treat-
ment of these limits apply likewise for the FOFO case with even more atten-
tion due to quadratic momentum dependence of cosu and even faster beta
function growth. As an example we show the Larmor beta function of the
cell for 200 MeV kinetic energy muon beam, 0.5 m long 1.8 T solenoids and
drift length equal to 1.5 m in Fig. 4.5

B [m]
2.3 TN 7

-\ /
A\ /

s [m]

Figure 4.5: The Larmor beta function in the FOFO.

4.8 Remarks on nonlinear dynamics

The nonlinear dynamics enter the beam physics through various doors. The
previous discussions neglect quadratic and all higher order terms in the mag-
netic field expansion. In addition, in our derivation of the equations of motion
we have applied paraxial approximation, which helps to simplify the problem,
but neglects higher order terms.

Nonlinear fields can be seen as a small perturbation due to errors, in the
ends of magnetic elements as so called edge effects or can be introduced as
a special field component in the combined function magnets, or as special
separated function elements.
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One of the most important applications of nonlinear elements is chro-
maticity correction with sextupoles, magnetic elements in which the field
changes quadraticaly with distance from the magnetic axis. The exact treat-
ment of dynamics of a particle with momentum deviation shows a tune vari-
ation with momentum, mostly because the focusing strength of a quadrupole
decreases with momentum. These effects can be quantified by defining the
chromaticity:

Q
& (4.32)
Po
It can be shown that the chromaticity can be corrected by placing the

sextupole magnets in dispersion regions. For example in the horizontal plane
holds:

1
§o = — 170, /C Be(K — mD)ds (4.33)

where the first term in the integral is the so called natural chromaticity of the
ring and the second one corresponds to correction with sextupolar component
described by m.

The reason for taking care of the chromaticity correction is very interest-
ing. The nonlinearities in the magnetic fields, which are always present due
to errors and misalignments, can act destructively on the beam in circular
accelerators for certain tune values, which fulfill the resonant condition:

aQz + bQ, = integer (4.34)

with a and b being integer. It can be pictorially understood in the following
way: for the resonant condition, the particle sees the perturbation always in
the same way, let’s say ”in phase”, and the effect can add up creating a loss
of the particle. In the out of resonance condition effects from various passes
cancel out each other. The chromaticity correction controls the variation
of tune with momentum and the working-point chosen for on-momentum
in the (@, Q,) diagram. Without the chromaticity correction the tune for
off-momentum particles could move close to a dangerous resonance.
Another nonlinear phenomenon enters via the edge effect. In the end of
magnetic elements, where the field reduces to zero , higher order terms in
the field expansion cannot be neglected. We can treat this effect assuming
that the magnetic field vanishes on a relatively short distance compared to
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betatron wave-length and compared to the length of a magnetic element.
Then the longitudinal variation of the magnetic field can be approximated
in this limit as a step function. The change in the position and angle of the
particle passing through the input end of a quadrupole can be estimated via
the following equations [34]:

Az = (ix?’ + 1:Ey)K Az’ = (lxyy' — 133'(332 +y*))K (4.35)
12 4 2 4

At the output of the quadrupole, the sign of K is reversed. The same
equations apply to the vertical motion when K is changed to —K. In the
case of real end field patterns, numerical tracking methods and explicit field
calculations are needed.

Other nonlinear terms arise from the exact treatment of equation 3.27.
They are called the kinematical terms. Their effect is usually negligibly small
in conventional accelerators, but has to be studied carefully in extreme cases
such as the interaction region of the muon collider, where the relatively large
emittance beam has to be focused to a very small beta function value. The
effect is usually explicitly included in tracking codes, which take into account
higher order beam dynamics.

At the end of this section we shall comment about the Liouville theo-
rem and applicability of emittance in the presence of nonlinearities. The
Liouville 6D phase space volume is conserved even in the presence of strong
nonlinear fields and couplings, but the 2D emittances are not conserved. The
horizontal, vertical and longitudinal 2D emittances can be viewed as projec-
tions of the 6D volume. In the presence of nonlinearities and couplings the
projections of motion are not ellipses. First filamentation can be observed
and for the presence of even higher nonlinearities the dynamical portrait is
noncompact due to the creation of islands and a transport between the sub-
spaces is possible. The presence of nonlinearities can create an increase in
2D emittance.

37



38



Chapter 5

Longitudinal dynamics

We shall now turn on the RF (radiofrequency) cavities and explore the dy-
namics in the longitudinal phase space. The concept of the phase stability
was independently discovered by [32] and [31] in 1945. It resolved the problem
of acceleration of charged particles to arbitrarily large relativistic energies.
We shall now briefly explain the particle dynamics in the synchrotron un-
der the influence of RF fields. The acceleration of particles is also possible
with electrostatic devices, but its field gradient is limited to values much
lower than in RF cavities. Nevertheless, they are still in use in, for example,
particle sources.

5.1 Synchrotron equation in a linac

We shall derive briefly the phase focusing effect in a linac [33] and then
comment about phase focusing in a ring. We shall not study the principles
of the design of the RF cavities. The longitudinal component of the electric
field changes with time according to the law:

WRFZ

E = Eycos(wrrt — ) = Eycoso (5.1)

Up
where we have introduced the phase variable ¢, and v, is a particle velocity.
The synchrotron motion is the motion of a particle with energy deviation
oW and phase deviation d¢ with respect to the reference particle accelerated
at the synchronous phase ¢;. The expression of 0W after passage through a
cavity of length L, is:
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W = qEyL.T;(cos¢p — cosds) (5.2)

where q is a charge of the particle and 7} is the transit time factor, which takes
into account the variation of the field during the particle passage through the
cavity. The transit time factor can be expressed by:

sin(0/2)
6/2

where L. is the cavity length. The transit time factor is of great impor-

tance for nonrelativistic transport lines. For relativistic energies usually it is

close to unity. Assuming the acceleration continuously distributed along the
channel, the variation of W with s is:

T% = 0= wRFLc/vp (53)

%5W — gEqTicos|(y + 66) — coshy (5.4)
The derivative of §¢ with s is:
d . WRF 1 1 ~ WRF
Eéqﬁ = (ﬁ ﬁs) R~ moc3,3§’7§’6W (5.5)

The equations 5.4 and 5.5 govern the synchrotron motion. The invariant
of the linear synchrotron motion can be written:

(69)* | (6W)?
a2 + B2
The area of the above ellipse is the longitudinal emittance.
The synchrotron oscillation wave-length is:

= const (5.6)

wrrqEyTysing,
moc3 B33
We come back to the equations 5.4 and 5.5 and derive the second order
equation of motion:

Ay = 2m(— )72 (5.7)

d?6¢  wrrqET,
ds? moc3 533

[cos(ds + 6¢p) — cosps] =0 (5.8)

The motion can be seen as a nonlinear oscillation in an effective potential
possessing one stable and one unstable fixed points. The effective potential
is:
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U(dp) = #ﬁlgﬁqE@ﬂ[sm(qﬁs +00) — sings; — dpcosds] (5.9)

The equation of the separatrix which divides the phase space into stable
and unstable regions:

WRF

W(5W)2+quﬂ[sin(¢s+6¢)+sz‘n¢s— (2¢5 +3p)cosps] = 0 (5.10)

The separatrix, together with the electric field and the effective potential
are shown in Fig. 5.1.

=

SyNAIgIous R phase \

Figure 5.1: The relative position of the stable RF bucket (§¢,0W) in red
with respect to the effective potential (§¢, U) in blue and the electric field
(¢, F) in an RF gap in black.

5.2 Orbit lengthening and transition

The effect of orbit dispersion in the magnet due to different radi of curvature
for particles with different momenta creates a different path length of orbit
for particles with different momenta. The change of length of the path to

first order is given by:
s+L
L = / 3(s)ds (5.11)
s p(s)
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For off-momentum orbit described by dispersion function the previous equa-
tion can be written:

op rstL D(s)d
5L = —p/ (s)ds (5.12)
Po Js p(s)
Now we can define the momentum compaction factor c.:
1 rstL D
Qo= — / ) 4 (5.13)
LJs  plo)
The time of flight on the path with length L is:
L
T=— 5.14
5 (5.14)
Now we calculate the variation of T:
0T 0L 68
= == _F 1
- 7 3 (5.15)

The first therm represents contribution from path length variation and the
second one corresponds to speed variation with energy. Finaly we can write
the formula for the time variation:

T _ (o Ly _ o

a, — — 5.16
T ( 2" po npo ( )

where v is the relativistic factor for the reference particle, n is called the
slipping factor and plays an important role in longitudinal dynamics. In
particular one can find a specific value of o, for which 7 vanishes. In that
particular point there is no difference in the revolution frequency for the par-
ticles with momentum deviations. This point of machine operation usually
creates additional difficulties because of a lack of longitudinal stability. This
point is called the transition. The equation 5.16 can be rewritten in the
following way:

oT 1 1.0p
— =(5 - =)= 5.17
T (7% 72)130 (5.17)
where yr called ”gamma transition” is defined by:
1

NG
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5.3 Longitudinal focusing in a ring

We shall now briefly comment about the phase focusing in a ring accelerator.
The synchronous particle has to remain synchronised with respect to the
cavities. The RF frequency is thus an integer multiple of the revolution
frequency:

WRF = hwm, (519)

where, h called the harmonic number, is an integer number. Then the par-
ticle with momentum deviation has a different length of orbit, which has an
influence on the arrival time in the cavity. Assuming the continuous accel-
eration model, one can derive the similar synchrotron equation with time as
independent variable instead of length. One can show that the synchrotron
oscillation in the ring accelerator is described by the synchrotron frequency:

QQ — hqvmawﬂnswrev‘sz.ngﬁs
° 27 R,ps

where R, is the effective ring radius with 27 R, equals to the orbit length for
the synchronous particle and 7, is the slipping factor defined in equation 5.16.
This expression differs from 5.7 by expressing the RF frequency in terms of
revolution frequency and harmonic number, by expressing the electric field
by the averaged voltage around the ring (g;”—;i) and by putting the proper
expression for 7,, which in the linac is simple —v; 2.

(5.20)

5.4 Normalized emittance

We will take a moment to comment on quantities, which are strictly con-
served during the motion. The transverse emittance defined in section 4.3
is conserved only in the absence of acceleration. It can be clearly seen in
the simplified way: consider a beam of particles crossing a very short accel-
erating cavity. The x’ of the particles is reduced after passage through the
cavity because the transverse momentum component was unchanged, but the
longitudinal one was increased by the process of acceleration. The position
x of beam particles was not changed during the passage through very thin
cavities. It seems that the Liouville theorem is violated, but it is only be-
cause we treat the Hamiltonian in which we have assumed that energy is
constant. When acceleration is present the angle z’ is no longer canonically
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conjugated to the x variable. The process of decreasing z’ during accelera-
tion is called adiabatic damping. One can define a quantity, which remains
conserved during acceleration. This is the so called normalized emittance:

en = Prye (5.21)

where 3 and v are relativistic factors of the reference particle of the beam.
It turns out in the longitudinal plane, that the phase difference §¢ and energy
difference W are already the canonical variables, and the longitudinal emit-
tance is conserved during acceleration. There still exists an analogy of the
adiabatic damping in the decrease of ¢ with acceleration. This is accompa-
nied by increase of 0W which leaves the longitudinal emittance unchanged:

NI
o

0 ~ (Bsvs)~ SW ~ (Bs7s) (5.22)
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Chapter 6

Input beam for muon front end

Now we shall introduce the subject of beam dynamics in the muon front end
of the neutrino factory. Firstly we shall define the subject and describe the
input beam, which we want to accept.

6.1 Front end in an accelerator

Front end is usually the part of the accelerator facility, which prepares the
beam of charged particles created in the source before acceleration or storage.
The front end defines the beam for the downstream part of the accelerator.
The condition under which the cloud of charge is being created in the source
makes it very difficult to handle directly. This is because the charge particle
sources usually creates particles incoherently producing wide thermalized
charge distributions. Without special treatment in the front end most of
this beam would be lost. The front ends are usually constructed with special
elements providing the focusing system with very large transverse acceptance.
The longitudinal plane usually needs special treatment to prepare the beam
in the well defined acceptance limits for easy use of the RF system in the
downstream accelerator installation.

The muon front end is not an exception to the situation described above.
In addition, it has the responsibility of delivering enough muon intensity for
the accelerator to achieve neutrino flux with promising discovery potential.
In other machines there are other options for achieving enough intensity in
proton or electron machines. Usually, the source current can be increased or
the beam storage applied to achieve the required intensity. In the case of a
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neutrino factory all parameters are almost at the physical or technological
limits. The highest possible muon intensity is limited by the instantaneous
proton current on target, its repetition rate and a cross section for pion
production. The energy deposition of 4 MW proton beam considered for a
neutrino factory and superbeam operation on the target makes it one of the
most challenging parts of the machine. The repetition rate is also limited
by the special time structure of the beam required for a muon storage ring,
which dictates the small duty factor. The duty factor is defined as a ratio
of time with beam and total machine cycle. In addition, the muon beam
cannot be stored before final injection into the storage ring at the ultimate
energy because of muon decay.

6.2 Beam time structure

The muon beam macrostructure in the neutrino factory is predefined by the
presence of a decay ring, which dictates low duty factor for the muon front
end and accelerator. In other words, after the final filling into the decay ring
the muon beam performs a few hundreds revolutions and no intermediate
filling is foreseen in the present scenarios. A further limitation is given by
the horn repetition frequency, which, set at 50 Hz, is already a technological
challenge. The muon beam inherits the time macrostructure from the proton
beam in the present approaches. It consists of a single bunch or a train of
bunches. Its structure constitutes a beam microstructure.

The beam microstructure can stay constant in the front end, being a
carbon copy of the proton beam microstructure at the target. In this case
we refer to the bunch to bucket principle (B2B). In other words, there is
a one-to-one correspondence between proton bunches hitting the target and
muon bunches trapped inside stable buckets at the exit of the muon front
end. This is exactly the case for the CERN reference scenario [19], where a
train of 140 proton bunches at 44 MHz hits the target and muons are phase
rotated and cooled at the same frequency of 44 MHz or at a second harmonic
- 88 MHz in the latest proposal leaving every second bucket empty. The same
principle governs the Japanese NuFact design [35] where the time structure
is kept constant from the target through the whole FFAG ring chain.

It is also possible to change the time structure in the front end, which can
be done in the process of bunching. This beam manipulation is motivated
by the use of high frequency RF, which offers a higher accelerating gradient,
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of interest for fast cooling or acceleration. A large single bunch or a train of
low frequency bunches is converted into the train of high frequency bunches
with high efficiency. This philosophy is used in the American NuFact Study I
[17], where the single bunch is phase rotated in induction linacs and bunched
at 200 MHz in the double harmonic buncher ( 400 MHz cavities are used to
modify the potential of 200 MHz cavities to minimize the losses). The Study
IT [18] proposes to bunch the beam at 200 MHz by a special technique de-
veloped by D. Neuffer [36] called adiabatic bunching, where the bunch, after
passing a long drift, is injected into the buncher with varying RF frequency
(300-200 MHz) and voltage. Then the bunched beam is rotated by the 200
MHz phase rotation section.

6.3 Input beam

We start our description with the proton beam at the target although some
authors do not include targetry, capture and decay channel problems into
the front end. Nevertheless, these components and its parameters define the
muon beam for the neutrino factory.

The proton beam at the target consists of the single bunches (or train of
bunches) usually with assumed short time length of the order of 1 ns rms
or 4 ns total. At the target in nuclear physics reactions, a detailed descrip-
tion of which is beyond the scope of this note, pions are created in a very
large transverse emittance and with a very large energy spread. In other
words pions, are produced with large transverse and longitudinal momentum
spread. It should be noted, that detailed parameterization of pion produc-
tion cross section is still unknown to a sufficient precision. Surprisingly, the
process of pion production extensively used for many years in nuclear and
particle physics for a production of secondary beams (for example in Meson
Factories), was not exactly measured for a wide spectrum of target materials.
The uncertainty of even 20 % can be present in measured production cross
sections. The existing codes differ in many aspects in simulating the target
production process. Nevertheless, there is a hope, that this problem may be
resolved by the Harp experiment [37], the purpose of which is to measure the
cross sections in question.

In this note we use the particle production simulated by the MARS code
[38], which was used for the horn simulations in [39]. The departure from
physical values will result in different particle yields and could even have
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an influence on the capture reference energy and thus modify the front end
design, but the general concept will remain valid. At the target, the pion
beam is captured in the magnetic horn [39] or in the high field solenoid. The
choice and details of the capture scheme are irrelevant for our study. From
now on, we assume horn capture and in addition, we assume 4 ns long proton
bunch with time distribution given in [14]. The arrival time is sampled using
Monte-Carlo methods. The proton beam time distribution at the target is
shown in Fig. 6.1. The pion spectrum at the horn output calculated in the
MARS simulation is shown in Fig 6.2. The simulation takes into account
tracking in the magnetic field of the horn and scattering in the walls.

-2 -1 0 1 2
time in ns

Figure 6.1: Proton bunch time distribution.
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Figure 6.2: Pion spectrum at the horn exit.

6.4 Decay channel

Downstream of the collector a pion decay channel is located, which is usually
of a solenoidal structure. In the CERN scheme after the horn capture there
is a solenoidal channel of the uniform magnetic field, 30 m in length. In the
American design the solenoidal field is adiabatically reduced to achieve the
average transverse momentum reduction due to approximate conservation of
adiabatic invariants [40]. In the CERN scheme the required reduction in
angle is performed directly at the horn, which is a point to parallel imaging
optical device.

The choice of the solenoidal focusing is motivated by minimization of the
emittance growth due to pion decay. It can be shown that an instantaneous
transverse emittance growth is proportional to a value of 3; at the given
point. The uniform solenoidal channel is capable of providing the smooth
beta function all along the channel simultaneously in both planes. Here
we have to mention another design [41], based on an AG lattice, where the
emphasis is put on multichannel capture and its further recombination in the
funneling scheme in order to reduce the integrated power per target and to
increase its lifetime.

The length of the decay channel is defined by the pion and the muon life

49



time and is a compromise between the high pion to muon transition and low
relative muon losses. Fig. 6.3 shows the length at which 90 % of pions have
decayed as a function of the initial pion energy. The physics behind it is
described by the simple exponential decay:

N, (s)
N (0)
For optimization of the decay channel length the problem can be described

by the system of coupled ordinary differential equations relating change of
number of pions and muons with distance:

= e_m (61)

dN, Ny
=— 6.2
ds c(BYT)x (62)
dN,  dN, N,
e — 6.3
ds ds  c(ByT), (6:3)
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Figure 6.3: Length at which 80 percent of pions decay, versus energy.

The magnetic field of 1.8 T was chosen as limiting value for normal con-
ducting solenoids. The higher value could be achieved using superconducting
magnets but the use of this technique in the part of the decay channel close
to the target is challenging due to a very high energy deposition. The muon
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Figure 6.4: Longitudinal portrait of muon beam at the exit of the decay
channel.

beam at the output of the decay channel, projected in the longitudinal and
the horizontal planes is shown in Fig. 6.4 and Fig. 6.5, respectively. We
have assumed the radius of the beam pipe in the decay channel of 30 cm.
The beam growth in length can be seen due to variation of speed with en-
ergy, combined with the process of pion decay comparing longitudinal beam
portraits at the output of the decay channel with the proton beam time
distribution at the target.

6.5 Parameters of the muon bunch

We start by reminding the kinematics of pion decay. The kinetic energy of
the muon is related to parameters of the pion moving on the reference axis
in the laboratory system by the following formula:

Eutot = 7#(E1 + ﬁwplcose) - mu (64)

where FE; and P; are muon total energy and momentum in the pion rest
frame and are given by:
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Figure 6.5: Transverse phase space of muon beam at the exit of the decay
channel.

mfr + mi m, — mi

E, = o P = o (6.5)

The angle 6 between the z axis and the muon momentum vector in the
pion rest frame belongs to values contained in the interval of 7. We observe
that there exists a kinematically allowed energy region for pions to decay into
the given kinetic energy muon. The extreme values for this region correspond
to forward and backward decay in the pion rest frame or values of # +7. From
this we can deduce that the maximal time of flight of the given energy muon
at the exit of 30 m decay channel corresponds to the lowest allowed kinetic
energy pion, which decays forward into the muon at the end. Furthermore,
the minimal time is given by the flight of the maximal kinetic energy pion,
which decays backwards thus creating the muon at the exit of decay channel.
Here we assume, that the muon energy band is within pion energy band.
With this result in hand we will estimate the orientation of a muon bunch
at the input of phase rotation in order to deduce the effective input angle
in the phase-energy plane. We can also calculate the total kinematically
allowed longitudinal phase space volume for the given muon energy range.
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The method mentioned above overestimates the real required longitudinal
acceptance, because it does not take into account the statistical character of
the decay. In other words, it calculates the total allowed volume, without
taking into account the fact that probabilities of decay into the regions close
to boundaries vanish. This problem is addressed in [43a]. Nevertheless, the
estimation of the total longitudinal muon emittance can be of interest. The
pion time of flight can be calculated from the formula:

L

Br(Eror)

To evaluate the kinematically allowed region we evaluate 3, corresponding
to the forward and backward decay as a function of the muon kinetic energy.
We obtain the double-valued function. To calculate the value of the total
longitudinal emittance, we integrate over the given energy interval and take
into account finite duration of the initial pion bunch:

T(En) = (6.6)

ESET L L
, _ + AT —
Emin Cﬁ;nm Cﬁ;naz

e, —

YdEyo (6.7)
tot

We can separate from the above equation the contribution from the pion
initial emittance and the contribution coming from the pion decay:

TEr, = M€y + MEdecay (6.8)
€Yy = ATAEtOt (69)
S L 1Y, . 13 T
ecay — . 0
C B " Byy\| B3y + P2 — B} — E\PL Eyy\/E}y + P! — B} + B\ Py
(6.10)

where L is the length of the decay channel (30 m), AT is the total initial
time length of the pion bunch at the production target (4 ns) and E;, P; were
explained in equations 6.5. In the above calculation, we simply expressed
BmaT and ™" as a function of the muon total energy E. After integration
the final result is:

Etot - %AEtot
Ey

Eio + %AEtot

2=
(6.11)

L
e = ATAEtot—i—Q;Pl (ArcTanh( )—ArcTanh(
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Chapter 7

Longitudinal capture

The longitudinal plane requires a special attention in the muon front end to
maximize the muon transmission. The initial muon beam created at the end
of the decay channel has a very large momentum spread and its shape in
longitudinal plane is filamented. To avoid large losses, special longitudinal
bunch manipulations were proposed to match the muon beam to a stable ac-
celerating bucket for cooling or acceleration. They act on momentum spread,
time spread or even on the time microstructure of the muon beam. In this
chapter we describe RF phase rotation, magnetic bunch compression and
bunching.

7.1 Principle of phase rotation

The beam at the exit of the decay channel has extremely large momentum
spread, (Fig. 6.4). The change of tune for off-momentum particles would
create a large mismatch in the downstream part of the machine and a beam
loss. Even if we manage to transport this beam through the transport chan-
nel without transverse losses, which could be possible for example assuming
a constant uniform solenoidal channel, the limitations of the longitudinal
acceptance would nevertheless lead to beam loss during acceleration or cool-
ing. The height of the separatrix of an accelerating bucket, which defines the
stable part of the longitudinal phase space, is limited by the voltage applied.

Phase rotation uses the correlation between an arrival time in the RF cav-
ities and momentum (energy) deviation to obtain a beam with lower energy
spread. The time-energy correlation has already been created in the decay
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channel and can eventually be increased in an additional drift section. The
RF phase is fixed at zero angle at the reference capture energy, which gives
zero acceleration, but particles with positive and negative energy deviation
receive deceleration and acceleration respectively. From here we assume that
zero phase corresponds to zero RF gradient. The beam continues to increase
further in length or in phase, but energy deviation is reduced. The process is
continued until the energy spread is exchanged with the time spread, which
can be treated as an ultimate limit for the procedure. In addition, the beam
can reach the nonlinear part of the RF voltage, which creates the filamenta-
tion limiting the applicability of procedure to less than half the RF period (7
in phase variable ). We illustrate the working principle of the phase rotation
in Fig. 7.1, showing evolution of the longitudinal portrait of the bunch. The
idealized elliptical bunch at the input of the phase rotation section is rela-
tively short as compared to the stable bucket but with the very large energy
spread represented by the red ellipse in Fig. 7.1 is injected into the phase
rotation section. Its evolution is seen as a blue ellipse with smaller energy
spread but larger time spread. The final black ellipse at the exit of the phase
rotation has a much smaller energy spread, than the initial red ellipse.

7.2 Phase rotation as 1/4 synchrotron wave-
length transformation

A convenient way of looking at the phase rotation is to treat it as a quar-
ter synchrotron oscillation wave-length transformation. The formula for the

synchrotron oscillation wave-length was derived in chapter 4. We quote it
divided by 4:

A _ 1 wredBoliy (7.1)
4 27 mecdfy:

The value of A, corresponds to the length of a linac phase rotation section,
which is built of RF cavities of frequency “Z, mean RF gradient Ey and
reference energy corresponding to relativistic factors s and ~s. This phase
rotator is supposed to rotate the upright bunch by 7/2 in the longitudinal
phase space. Scaling laws for the rotator can be written:

-

As ~ (ﬂs’ys)% As ~ E()_E As ~ f_% (72)
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Figure 7.1: Phase rotation principle. The initial idealized bunch (red ellipse)
with large energy spread is transformed into a long bunch with smaller energy
spread (black ellipse). The blue ellipse shows a intermediate state of the
process. The effect of the rotation in the longitudinal plane can be clearly
seen.

where for every formula we vary only one variable, treating others as con-
stants. Usually, in the neutrino factory studies, RF gradients are close to
the sparking limit. There exists an empirical parameterization of the achiev-
able gradient called the Kilpatrick limit, but the real limitation depends on
the technical details of the RF design. The Kilpatrick limit [42] relates the
surface gradient near the sparking limit to the frequency of a cavity:

8.5

fRF = 1.643Fe E (73)

where f is in MHz and E in MV/m. With present day designs the field
can exceed the Kilpatrick limit up to a factor 2. The accelerating gradient
is related to the maximal field by a geometrical factor. For example, the
CERN 88 MHz cavity is set at 2.3 Kilpatrick which corresponds to about
10.8 MV/m and the real accelerating gradient in the structure is 4 MV /m.

To situate the phase rotation of a neutrino factory in the context of exist-
ing schemes, it is interesting to take the characteristics of the proposed RF
cavities. The RF gradient is a function of RF frequency. For this purpose
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we take the 7 MHz, 0.7 MV/m RF from the Japanese NuFact studies, 44
MHz, 2 MV/m and 88 MHz 4 MV/m adopted in the CERN scenario and
200 MHz 10 MV/m proposed in the American designs. Fig 7.2 shows the
dependence of the RF gradient as a function of frequency. One can argue,
that one should use more physical parametrization based on the Kilpatrick
limit, but the real limit depends on details of cavity construction ( for ex-
ample room temperature vs superconducting, surface treatment etc.) and it
is more complicated, than the single Kilpatrick curve. Nevertheless it is in-
teresting to use proposed gradients to study the phase rotation. We assume
that the mean gradient in the rotator corresponds to the value quoted above.
We assume a lattice with superimposed RF cavities and focusing elements,
which enables very high packing of cavities and high avaraged RF gradient.
Fig 7.3 shows the quarter synchrotron wave-length as a function of frequency
for 200 MeV, 180 MeV and 130 MeV kinetic energies for muons. In Fig 7.4
the quarter synchrotron wave length is plotted as a function of energy.

10 [

RF gradient in MVm
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RF frequency in MHz

Figure 7.2: Parameterization of the gradient used in Nufact studies.
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Figure 7.3: Variation of quarter synchrotron wave-length with RF frequency.
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Figure 7.4: Quarter synchrotron wave-length as a function of energy.

7.3 Length of phase rotator

The shape of longitudinal portrait of the muon beam at the end of decay
channel is not an upright ellipse (Fig. 6.4). The realistic muon beam at the
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exit of the decay channel is effectively rotated and we have to take this effect
into account in order to estimate the length of the phase rotation section.
The shape of the muon bunch can be obtained by calculating the bound-
aries of the allowed region. To estimate the effective orientation of the muon
bunch, we take the arithmetic mean value corresponding to both boundaries.
The mean arrival time of a muon at distance L from the target is given by:

o _ LEa(P+ Eiy)\[P — B + B,
"¢ Bry(P? — Y + Eiy) — BTP?

(7.4)

From the above equation the value of d%—it at the exit of the decay channel
can be estimated.

The linearized solution to the longitudinal dynamics can be represented
by:

I g (7.5

From the above equation the approximate angle of the bunch at the exit
of the decay channel can be estimated. Note that the angle is different for
positive and negative values of AW, resulting from velocity variation with
energy. This dependence vanishes for ultrarelativistic energies. Working with
linearized dynamics it is convenient to calculate the angle in the (6¢, 6W)
plane at the value of the reference energy. The length of the phase rotation
is given by:

AP(s) = Admazsin( ;

al 2w
dEyot TRF E (7.6)

)+
dl' 27 2
Va4

where Tgrr is the RF period and d%—it is calculated at reference energy. The
coefficients a? and b? are defined as follows:

s= ﬁArcSin(
2m

2 WRF 2
= b = qF,T 7.7
a muc3ﬁ§’y§ q 0 ( )
Fig. 7.5 shows the length of phase rotation for 200 MeV and 180 MeV
kinetic energy as a function of RF frequency assuming gradient as in Fig 7.2.
Note, that d%—it is negative, so the first term in the equation 7.6 is negative
too.
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Figure 7.5: Length of the phase rotation linac.
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Figure 7.6: The phase rotation energy acceptance.

7.4 Energy acceptance of phase rotation

The efficiency of phase rotation depends on the ability to rotate the high
energy spread into the stable accelerating RF bucket for cooling or accelera-
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tion. The phase rotation is limited to less than half an RF period because of
a nonlinearity in the longitudinal dynamics due to sine-like voltage variation.
The ratio of the ellipse axes in the linear theory can be expressed by:

W b

QE - a ~ (/6575)

The real energy acceptance is calculated in the same way as the effective

bunch shape at the exit of the decay channel. The effect is again related
to the effective rotation of the bunch. This effect limits the real energy
acceptance of the phase rotation. To estimate the energy spread, which can
be phase rotated, we calculate the intersection of the ellipse in the (A¢, AW)
plane with the straight line tangent to the muon bunch at zero phase, see
Fig. 7.7. The phase at the point of intersection is then given by:

(AA—¢)OA¢mam

[M[SY]

(7.8)

Ag, = (79)
(A%)3+ 52
Using the relation between phase and time:
2
Ap=AT— (7.10)

Trr
where Tgp is the RF period, the energy spread, which can be phase-rotated
is:

b2

AW, = \/AWW — (A¢a)2— (7.11)

a2

The ratio (AAV‘[%)O is calculated at the centre of the (A¢, AW) plane, Adpmaz
and AW, corresponds to the ellipse axes, see Fig.7.7. A@nq. i set at (%W),
which is a little less than half an RF period. The AW,,,, is calculated from
equation 7.8 where we set ¢ at (7). In reality the dynamics is nonlinear
due to the sine shape voltage and asymmetric for the positive and negative
energies because of a paticle speed variations. In addition, the optimized so-
lution can be affected by the muon distribution and a solution with slightly
over-rotated bunch may be obtained. Nevertheless, the linearized parame-
terization is interesting to design the scheme and get a first approximation
of the parameters. In Fig. 7.6 the energy acceptance of the phase rotation is
shown as a function of RF frequency for 200 and 180 MeV kinetic energies.
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Figure 7.7: The blu line represents an idealized muon bunch at the exit of
the decay channel. It crosses the ellipse describing the boundaries of stable

longitudinal motion at A¢pes = 15

.

We can calculate the longitudinal emittance of the muon bunch for the
given energy acceptances as a function of the frequency using the results of
the previous chapter. But, as mentioned in the previous chapter, the method
highly overestimates the result, so we apply a more pragmatic approach. In
practice, the emittance given in equation 6.11 is scaled by a factor k of the
order of 0.5. Fig 7.8 show the longitudinal emittance of the bunch, which can
be successfuly rotated by the phase rotation for 200 MeV reference kinetic
energy compared with the longitudinal acceptance of the accelerating bucket
as a function of frequency at m/4 reference phase. Here, we can formulate
the so called longitudinal phase space problem, which states that within
the bunch to bucket principle the acceptance of an accelerating bucket is
insufficient to accept the muon bunch successfully rotated in phase rotation
for wide range of RF frequencies. Similar calculations of the muon beam
longitudinal emittance can be found in [43]
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Figure 7.8: Bunch and bucket longitudinal areas versus RF frequency. The

dashed and the solid lines describe longitudinal areas of the accelerating
bucket at 7/4 and the muon bunch, respectively.

7.5 Longitudinal matching to an accelerating
bucket

The longitudinal phase space problem can be formulated again by calcu-
lating the final AW after phase rotation and comparing it with the energy
acceptance of an accelerating bucket at m/4. We calculate it by assuming
a muon bunch rectangular in shape. Knowing its area and length (19—07r) we
can calculate its half width in energy spread (Fig 7.9). We see that below
70 MHz within our approximation bucket height is higher than the rotated
bunch. This means that bucket is filled only partialy. To avoid longitudi-
nal blow up during acceleration or cooling the voltage could be lowered to
match the beam into the bucket, but as we want to collect as much muon
current as possible we instead search for a solution to optimize bucket filling.
A possible solution could be to increase a frequency of all or part of a set
of RF cavities in the phase rotation to second harmonic with respect to an
accelerating RF. For this scheme, the muon train time structure corresponds
to the accelerating RF. Another solution could be to apply a magnetic bunch

64



70 F

60

50

MeV

30

20

20 40 60 80 100
RF frequency in MHz

Figure 7.9: The dashed and the solid lines describe the "hight” of the accel-
erating bucket at 7/4 and the muon bunch after phase rotation, respectively.

compression instead of the phase rotation or a combination of both to maxi-
mize the muon transmisson. The above solutions fit into the bunch to bucket
principle. Another family of solutions can be developed by employing a con-
cept of bunching to divide a big muon bunch into a string of microbunches
fitting a downstream accelerating RF.

7.6 Phase rotation in the CERN reference
scenario

We show the phase rotation in the case of the 44 MHz CERN scenario [44].
The reduction of the beam energy spread can be clearly seen by comparing
the longitudinal portrait at the input and output as shown in Figs 7.11 and
7.12, respectively. The 44 MHz accelerating bucket at 7/4 is drawn together
with the phase-rotated beam. Thus one can observe that the bucket is too
short to accept efficiently the beam, the bucket height being a little larger
than the beam. We report briefly on the transverse dynamics and a cell
structure. The solenoids are superimposed with the RF cavities to maximize
the RF packing factor. The RF packing factor is the total length of RF
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cavities divided by the total length of the phase rotation section. The lattice
studied above consists of 21 1.4 m RF cavities with a total length of 29.4 m.
The averaged gradient is 2 MV /m. The magnetic field varies from about 1.5
T outside to about 3.25 T within a body of 96 cm long solenoids. The layout
of the cell and its approximate symmetric Larmor beta function are seen in
Figs 7.13 and 7.10 respectively. The cell structure was developed in [45].
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Figure 7.10: The Larmor £, function in the phase rotation cell in hard edge
approximation. The red and black curve are calculated assuming zero and
1.5 T values of magnetic fields between solenoids respectively.

7.7 'The second harmonic phase rotation

The idea of the second harmonic phase rotation is based on the simple obser-
vation that a longer bucket is needed to accept the muon bunch. We propose
to act on a muon beam bunched at 44 MHz with 88 MHz RF system for
phase rotation followed by longitudinal capture in 44 MHz accelearting RF
system ( for cooling or direct acceleration). The higher voltage available at
the higher frequency makes the length of the phase rotation shorter. Ac-
cording to the previous study, energy acceptance of the phase rotation is
reduced with frequency, but some gain is expected due to better matching
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Figure 7.11: The muon beam at the end of decay channel.
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Figure 7.12: Longitudinal portrait of the muon beam at the exit of the CERN
44 MHz phase rotation section.

to the bucket. We study the phase rotation at 88 MHz 4 MV /m followed
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Figure 7.13: Layout of 44 MHz phase rotation cell. Note superimposed RF
cavities and solenoids

by capture at 44 MHz accelerating bucket at 7/4 phase and 2 MV/m. The
longitudinal phase space after the second harmonic phase rotation is shown
in Fig. 7.14 together with the 44 MHz bucket. Matching to the bucket is
better than in the pure 44 MHz case (both for phase rotation and capture) by
about 15 %. The higher efficiency is expected for the phase rotation located
closer to the target, where the muon beam is shorter and better fits into the
88 MHz system, but RF acts on the beam with a higher admixture of pions.
Then, pions decaying during the phase rotation can produce muons outside
matched area in the longitudinal phase space. The final optimization of the
proposed scheme is not possible without detailed information on the initial
pion spectrum at the production target.
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Figure 7.14: Muon bunch rotated with 88 MHz phase rotation system cap-

tured by 44 MHz accelerating bucket at 7/4 phase (the second harmonic
phase rotation).
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7.8 Magnetic bunch compression

In order to achieve better matching and as a result higher muon transmission,
we propose to act on the arrival time of particles with momentum deviation.
Introducing dispersion by application of bending magnets creates the effect
of different path lengths for off-momentum particles, which together with
velocity variation results in arrival time variation. This effect in the linear
approximation is described by equation 5.17. Phase rotation is used to reduce
initially the energy spread, but keeping the correlation between the arrival
time and energy deviation. We thus reduce the effective angle of rotation
and number of RF cavities is reduced. The bunch should be rotated only
to the energy spread corresponding to the accelerating bucket height, which
was already given in Fig. 7.9. Then the required compression in phase is
given by the following equation:

a2

A¢BC = \/Wrgzaw - AWIJZ’U,Cketb_Q (712)

Timein ns

20 30 40 50 60 70 80
RF frequency in MHz
Figure 7.15: Required compression in time for various RF systems.
where W,,,, corresponds to maximal energy amplitude in the motion de-

scribed by the ellipse in 7.7 at 19—07r phase. We plot the amount of compression
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needed for the various RF systems as a function of frequency assuming the
previous gradient lows in Fig. 7.15. The length of phase rotation upstream
of the compressor is adjusted to rotate the bunch to Wyyce:.

We have studied the phase rotation with solenoidal focusing in[47] and
in an AG triplet lattice. The choice of AG lattice in [48] was studied as a
continuation of the AG applications in the decay channel studied in [41]. The
detailed parameters differ in these two cases, but the general concept of bunch
compression remains the same. Similar design was proposed independently
in [49].
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Figure 7.16: Optics in the single triplet cell. The red and blue lines are 3,
and 3, functions, respectively.

We shall now give a brief description of the AG focusing line. The line
for phase rotation has 2 cm acceptance. The magnetic field in the line is
compatible with room-temperature magnets. To achieve a high RF packing
factor, a triplet AG focusing structure was chosen, which offers long drifts
with small 3; values in both transverse planes. The optical functions in a
single 4 m phase rotation cell are shown in Fig. 7.16. On both sides of the
cell there is room for one 44 MHz cavity and packing factor is 1/2. The
phase rotation channel consists of eight triplet cells. The phase rotation
line contains 16 cavities with 2 MV/m peak gradient. The line consists
of a matching section from the FODO decay channel, the phase rotation
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Figure 7.17: Optics in the phase rotation and the matching sections. The
red and blue lines are 3, and 3, functions, respectively.

section and a matching section to the magnetic compressor chicane. Optical
functions are shown in Fig. 7.17. The result of tracking the muon bunch
through the phase rotation line is shown in Fig. 7.18. The reference particle
was chosen at 200 MeV kinetic energy.

The principle of magnetic compression is based on lengthening of particle
trajectories for off-momentum particles [46]. It can be achieved by the proper
choice of vy with respect to the relativistic v of the bunch center. We present
now the example of matching a 44 MHz bucket with the combination of RF
phase rotation. From the above calculations we obtain the required value
of compression in time AT of about 4 ns. The phase rotation should rotate
the initial bunch to £50 MeV. The required amount of compression can be
realized choosing yr to be 1.76 with relativistic vy of 2.89 for a reference muon
of 200 MeV kinetic energy. The length of the compressor lattice is 26.4 m.
The magnetic compressor chicane consists of two periods with one sign of
the bending magnets each, which results in a zero total deflection angle.
Each part consist of three FODO cells and is designed as an achromat. The
appropriate value of vz was achieved by the choice of deflection angle in three
bending manets. Optical functions of the compressor chicane are shown in
Fig. 7.21 and its layout in Fig. 7.22 respectively. The result of tracking in
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the longitudinal plane in the compressor chicane together with the 2 MV/m
44 MHz accelerating bucket at 7/4 synchronous phase is shown in Fig. 7.19.
Comparison of Fig. 7.18 and Fig. 7.19 shows the compression of the bunch
in length. Table 7.1 gives the magnet parameters.

The study of the transverse dynamics in the compressor shows the pres-
ence of strong geometrical and chromatical aberrations leading to emittance
dilution. As an example, we show the horizontal tracking of the matched
ellipse for on momentum (see Fig 7.23) and with momentum deviations of
+10 % and - 10 % in Fig. 7.24 and 7.25, respectively. The deformation of the
initial ellipse (the blue one) for the on-momentum is due to geometrical aber-
rations and a mismatch due to chromatic aberrations for the off-momentum
cases. The result of tracking is described by the black ellipse. The center
of the bunch is not matched to zero for off-momentum studies although the
linear dispersion is matched to zero. This indicates the presence of the non-
linear dispersion, which is not matched to zero. We present now the result of
tracking in the compressor with a sextupolar correction described by the red
ellipse. The sextupoles were placed in the large dispersion region in the lat-
tice. We managed to reduce the filamentation in the horizontal phase space
and to match the off-momentum orbits to dispersion. The off-momentum
orbits before and after corrections are presented in Figs 7.26 and 7.27 re-
spectively. The sextupolar correction has a sizeable effect in the longitudinal
plane, which can be seen in Fig. 7.20 . The remaining emittance dilution is
still not negligible and could be reduced in the lattice with bending magnets
different from sector magnets, which are responsible for large geometrical
aberrations.

The tracking studies in this and all later chapters were performed using
functions working with the BeamOptics code [27] written in the Mathematica
[55] framework.
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Figure 7.18: Longitudinal distribution after phase rotation.
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Figure 7.19: Longitudinal distribution after magnetic compression.
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k B g r B

[m2] | [m] | [T/m] | [m] |[T]
Triplet 2.25 4.5 1215 0.3 |0.64

-1.79 |85 |-1.71 | 0.41 | 0.7
Matching 1.94 |7 1.85 0.37 | 0.68
sections 1.4 10.5 | 1.34 0.45 | 0.6
Compressor 0.7 3.9 10.67 0.88 | 0.59
(quadrupoles)
Compressor - - - - 0.55
(maximum bending)

Table 7.1: Magnet parameters in the line for 2 cm acceptance.
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Figure 7.20: Magnetic compression with sextupolar correction
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Figure 7.21: Optics in the compressor chicane. The red, blue and green lines
are 3, B, and D functions, respectively.
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Figure 7.22: Layout of the compressor. The red and blue parallelograms
correspond to the focusing and defocusing quadrupoles, respectively. The
green polygons correspond to the sector bendings.
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Figure 7.23: Horizontal phase spaces in the compressor for on momentum
particles: initial (blue), final (black) and final with sextuoles (red).
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Figure 7.24: Horizontal phase spaces in the compressor for +10% momentum
deviation: initial (blue), final (black) and final with sextuoles (red).
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Figure 7.25: Horizontal phase spaces in the compressor for -10% momentum
deviation: initial (blue), final (black) and final with sextuoles (red).

Figure 7.26: Off-momentum orbits in the compressor without sextupoles.
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Figure 7.27: Off-momentum orbits in the compressor with sextupolar correc-
tion.
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7.9 Bunching method

An alternative solution to the bunch-to-bucket principle is based on bunching
the initial large muon bunch into a string of high-frequency microbunches.
Muon front-ends in the American Study I [17] (with the double harmonic
bunching) and II ( with Neuffer’s adiabatic bunching) [36] are examples of
this approach. A common feature of these proposals is a relatively low cap-
ture energy, which is motivated by the bunching. At lower energy the syn-
chrotron oscillation wavelength is shorter and all longitudinal bunch manip-
ulations can be done on a shorter distance. The disadvantage of Neuffer’s
approach is that the muon train is too long to be injected into any short
(50-100 m) ring. Cost-effective designs require small rings for cooling or
acceleration.

We are searching for the muon front-end capable of producing a short
muon train out of the single muon bunch at the exit of the decay channel
and of keeping large total longitudinal acceptance. As a solution, we pro-
pose conventional low-frequency phase rotation followed by bunching at high
frequency similar to Study I scheme. We show the example of a 10 MHz,
1 MV/m, 100 m long phase rotation section followed by a 200 MHz 140 m
long buncher linac, see Fig 7.30. The voltage is raised quadratically along
the length of the linac to increase the bunching efficiency. We show a lon-
gitudinal plane after the beam passed the rotator in Fig. 7.28 and at the
exit of the buncher in Fig. 7.29. The bunching efficiency achieved in this
study is 73.6 %. The disadvantage of schemes with bunching is that linacs for
both the low frequency rotation and the bunching are long. In Neuffer’s case
the initial drift following the decay channel mostly contributes to the length.
In this light the solutions with bunching can be hardly called cost-effective,
except for the RAL proposal, where the beam is bunched in a cooling ring
and no special bunching linac is foreseen [50].
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Figure 7.29: Muon beam at the exit of the buncher
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Figure 7.30: Layout of the muon front end with the buncher.
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Chapter 8

Cooling

Cooling is a process in which beam emittance is reduced. From previous dis-
cussions, it appears that the muon beam demands a large apperture machine
and that the beam dynamics is affected by large emittances. Cooling the
muons in the front-end would relax technical requiremenys and make ma-
chine more economical. The neutrino factory could be considered as the first
stage towards muon collider and, for such machines cooling is essential. We
present parameterization of the ionization cooling process as a handy tool in
cooler lattice design. Then we study cooling in a ring.

8.1 Theory of ionization cooling

All known and already well tested and widely used cooling methods are too
slow for muon beams. Ionization cooling was proposed [51] as a baseline
technique for muon beams. The simple principle is shown in Fig. 8.1. The
muon passes through an absorber, where it loses energy by the ionization
resulting from interactions with absorber electrons. Its total momentum
vector is reduced ( phase 1 in Fig. 8.1). Accelerating the beam along the axis
of the beam (phase 3) reduces the beam divergence and thus the transverse
emittance. There is however a multiple scattering of muons on the absorber
nuclei, which changes the initial direction of the muon (phase 2). This effect
is statistical in nature and after avaraging over the muon ansamble creates
the heating.

We shall derive an approximate equation of evolution of the transverse
emittance in the cooler, which can be either a linac or a ring. We consider

85



B dE/dx scattering re-acceleration

Figure 8.1: Fundamental principle of the ionization cooling: reduction of the
transverse momentum after passage through absorber and RF cavity.

the equation of emittance in a ring or in a linac:

€ = v,22 4 20,72’ + Bya” (8.1)

Let us make a variation according to infinitesimal change of angle, as-
suming that transverse momentum is small comparing with its longitudinal
component. This corresponds to the successive passage of a muon through
an absorber, where it loses its momentum and an RF cavity, where its longi-
tudinal component is restored. The net effect is a change in angle. Change
in angle can be approximately given by:

oz’ = —x'@ A —x'éﬂ (8.2)
p cBp
Now we vary the equation for emittance and substitute the last formula.
Before giving the formula we observe that averaging over the betatron phase
gives:

€
<a”?>=— 8.3
2%, (53
Finally after varying 8.1, substituting 8.2, using 8.3 during averaging
over betatron phase and assuming o, = 0 at the position of the absorber, we
obtain:
ow
de = —e—— (8.4)
cBp
Now we describe a small variation with respect to passage through a small
fraction of the cooler lattice. We can introduce the derivative with respect
to s:
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de dd—W A
= ¢4 p 8.5
ds 6cﬁp (85)

where % is calculated from the Bethe-Bloch formula at W, and P* is ab-

sorber packing factor. Assuming N absorbers of length d in a lattice of length
L, RF gradient E and reference phase ¢, P is given by expression:

Nd  PRFeEsing
ds

PA

where PR is an RF packing factor. We calculated a cooling term in the
emittance evolution equation.

Now we come to evaluation of the heating effect due to multiple scattering
effect of muons on absorber nuclei. The rms angle spread (see [52]) after a
passage of material characterized by radiation length Xj is:

136 | d d 136 | d

fo s\ %o (1+ O.OBSlnXO) ~ S \/;0 (8.7)
where p is the muon momentum in Mev/c. Xy and dW/ds depend on the
choice of an absorber material. Usually a material with large energy loss and
radiation length is needed. Liquid hydrogen is a possible choice, but requires
a special container and has in addition important safety issues. Lithium
hydride is an interesting alternative due to easy manipulations with solid
materials. Note the difference between the betatron function always denoted
B and the relativistic 8 factor. We observe that:

Se = By (62")? (8.8)
Finally we obtain the following expression for the heating term:
de 13.6>P4
=B 8.9
ds & (cBp)*Xo (8.9

The equation for the emittance evolution along the cooler lattice has the
following form:

de & A 13.6P4
ds cBp $ (cBp)*Xo (8:10)

The analytical solution for this equation can be expressed as follows:
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€(s) = €c + (g — €.)e Ie (8.11)

where €, and L, correspond to the equilibrium emittance and the cooling
length, respectively. The equilibrium emittance is the ultimate state of the
cooling process and depends on absorber material and lattice properties as
follows:

13.62
€e = ﬁwﬁcho% (8.12)
The cooling length can be understood as the length of the cooler needed
to cool the muon beam down by a factor 1/e. It is a function of the averaged
RF gradient in the cooler. It can be related to cooling time in the following

way:

R
¢ Bc PEFeEsing

The presence of dispersion in the cooler creates the correlation between
energy and position which can be used for longitudinal cooling. Putting
wedge absorbers in the high dispersion region, a position-dependent energy
loss is introduced. Particles with higher energy pass at a distance D from
the reference orbit and stay longer in the wedge absorber, which translates
into a larger energy loss. The effect of the dispersion at the wedge absorber
introduces an additional heating term in the transverse plane:

(8.13)

aw
eD-4 pW (8.14)
pc
N§'
PV = T (8.15)

where we put N wedge absorbers with angle ¢’ in the cooler of a length L.
In particular this term increases the equilibrium emittance achievable in the
cooler.

8.2 Motivation for cooling rings

The muon cooling channels proposed for a neutrino factory are solenoidal
focused linacs [17, 19]. The simple cell structure together with a lack of
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bending magnets and zero dispersion results in low equilibrium emittance.
The large number of RF cavities needed to achieve a sufficient cooling rate
on the entire lattice length makes the cooler price a substantial part of the
neutrino factory cost. To see the required length for cooling we study the
evolution of emittance assuming a 3, value of 0.5 m at the absorber and 44
MHz 2 MV/m at 7/4 phase. The 2 cm emittance muon beam at 200 MeV
kinetic energy is required to be cooled. The evolution of the emittance along
a cooler is shown in Fig. 8.2.
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Figure 8.2: Transverse emittance along the cooler lattice

It can be seen, that a 500 m lattice is needed to cool the beam by a factor
4 (the beam size is reduced by a factor 2).

A ring cooler is proposed [53] in order to reduce the cost of muon cooling
for the neutrino factory. The beam can be injected into a ring with a high
RF packing factor and perform a few turns until the emittance is reduced.
The ring circumference is a compromise between cost, performance of the
upstream part of the muon front-end in order to create a short high intensity
muon train and the injection kicker rise/fall time. The presence of a small
ring with standard full aperture injection puts a severe constraint on the
neutrino factory machine. The high-power proton beam has to be efficiently
converted into a short muon trains or single bunches separated by the cooling
time. Note that the CERN scheme in which 140 bunches are extracted at 44
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MHz from the proton accumulator ring to the target cannot produce the short
enough muon train. As an alternative, a very intense single bunch can be
formed at the target and bunched at the cooling frequency or short trains of
bunches could be formed by extracting proton beam in steps. In addition the
horn current flat top and the mercury jet at the target must last long enough
to accept the beam consisting of several muon trains or single bunches within
the machine cycle (assuming the use of the mercury jet target). In this way
we have introduced an additional intermediate time structure. Now we have
the machine cycle set at 50 Hz called macro-structure. This macro-structure
consists of short trains or single bunches with length consistent with the
muon cooling ring injection separated by the cooling-down time and kicker
time. At the most basic structure we have a time micro-structure compatible
with the RF system. Here we stop discussion on the constraints imposed on
the proton beam and target, and leave space for a future study. As a balance
between kicker rise/fall time and the total low cost of the cooler we assume a
circumference of 50-100 m. According to Fig. 8.2 the muon beam performs
5-10 revolutions to achieve the cooling by a factor 4.

8.3 Zero gradient ring

Effective cooling requires a small ; value at the absorber position. In addi-
tion a large RF packing factor determines the beam radius to correspon to RF
cavity size. The large momentum spread and associated chromatic aberra-
tions practically exclude the possibility of using standard low-beta insertions
matched to high §; values. Beam matched to a small beta at reference energy
deviates from matching conditions for particles with momentum deviations,
which can create a lower cooling rate duo to higher g; value or even beam in-
stability. This suggests that a lattice with low (; values everywhere must be
chosen. The single cell should have in addition large momentum acceptance.
With a lattice based on the alternating gradient principle in the FODO struc-
ture solutions with very short drift lengths and short but extremely strong
magnetic elements are usually found. In particular, it is difficult to go below
1 m f; value for the FODO based cell structure in both transverse planes at
the same point. This difficulty can be overcome in the AG triplet structure,
where there can be similar beta values in both planes at the end of the cell
and there is a long drift length. Unfortunately the beta value is high in one
transverse plane and large apertures are needed. All these limitations lead us
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to search for other convenient solutions with focusing present in all elements
and distributed more uniformly in a cell length.
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Figure 8.3: Optics in the cell of the weak focusing ring. The red, blue and
green lines are 3;, 5, and D functions, respectively.

We propose a solution with zero-gradient dipole magnets for focusing.
The triplet-like structure enables us to achieve similar beta values in the
drift sections at the end of the cell. The horizontal focusing is achieved via
1/p? term in bending magnets. Negative bending was introduced to achieve
small horizontal §,. The proper shape of the magnet edges creates an effect
of focusing in the vertical plane. All edge focusing effects act as thin focusing
lenses in the vertical plane. The edge defocusing effect in the horizontal plane
is much weaker than the focusing due to bending. The optics in the single
cell is shown in Fig. 8.3 and a cell drawing is shown in Fig. 8.4. The cooler
ring consists of 32 cells and is 96 m in circumference. The yr is imaginary.
The parameters of the ring are given in Table 8.1. On both cell ends there
is enough room for the 87.91 MHz cavity. A 43.955 MHz cavity can be used
as well but it would correspond only to one cavity per cell in average and
smaller RF packing factor. We study the evolution of the particle distribution
shown in Fig. 8.9. We consider the case of normal absorbers and wedge
absorbers with a wedge angle, both with liquid hydrogen. The evolution of
the transverse rms emittances are shown in Fig. 8.5 and Fig. 8.6 for the
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Figure 8.4: Layout of the ”Zero-gradient” ring cell.

horizontal and the vertical planes respectively as a function of the number
of turns in the cooling ring (Figs 8.12 and 8.13 for the study with wedge
absorbres). The longitudinal plane and transverse brightness are shown in
Fig. 8.7 and Fig. 8.8 (Figs 8.14 and 8.15 for the study with wedge absorbres),
respectively. We define the brightness of the beam as a particle density in
4D transverse phase space:
N
Byp=—" 8.16
P Am2enmseyms (8.16)
where N is number of particles in the simulation and takes into account
both losses due to aperture restrictions and muon decay. The initial and
final transverse phase space portraits are shown in Fig. 8.9 (8.16). The
initial and final longitudinal phase space are shown in Figs 8.10 and 8.11
(Figs. 8.17 and 8.18 for the study with wedge absorbres). The simulation
confirms the ability to cool in both transverse phase spaces. The presence of
wedge absorbers at the dispersion regions increase the achievable horizontal
emittance. The longitudinal emittance has a small tendency to grow even
if we do not take the energy straggling into account, but we can cure the
effect to some extent by using wedge absorbers. Unfortunately the vertical
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Length of negative field magnet length 0.3 m
Entrance edge angle of negative field magnet | 0 rad

Exit edge angle of negative field magnet 0.223838 rad
Deflection of negative field magnet -0.402517 rad
Length of positive field magnet 0.6 m
Entrance edge angle of positive field magnet | 0.223838 rad
Exit edge angle of positive field magnet 0.223838 rad
Deflection of positive field magnet 1.00138 rad
Long drif length 1.6 m
Number of cells 32
Circumference 96 m
Reference muon kinetic energy 200 MeV
Momentum acceptance +15%
Harmonic number 30

Qz, Qy 11.83, 11.68
Wedge absorber angle 0.3 rad

Yo -5.54i

Mean RF gradient 3.33 MV/m
Total transverse acceptance 2 cm

Muon transmission including decay 70.3%

Table 8.1: Parameters of the ”Zero-gradient” cooling ring.

acceptance of the ”zero-gradient” ring was not confirmed by the nonlinear
tracking studies. Nevertheless the study was an interesting introduction to
problems of muon cooling rings.
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Figure 8.5: Evolution of horizontal rms emittance in the dipole ring. Dashed
line represents the theoretical prediction.
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Figure 8.6: Evolution of vertical rms emittance in the dipole ring. Dashed
line represents the theoretical prediction.

94



0.055 |

0.05 -

0.045 -

0.04 -

rms emittance in eVs

0.035 -

0.03 r

Longitudinal

0.025

o
-

2 3
Number of turns

IS
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Figure 8.8: Evolution of transverse brightness in the dipole ring.
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Figure 8.9: Initial (small, red dots ) versus final (large, black dots) horizontal

phase space distribution.
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Figure 8.10: Initial longitudinal phase space.
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Figure 8.11: Final longitudinal phase space.
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Figure 8.12: Evolution of horizontal rms emittance in the dipole ring with
wedge absorbers. The theoretical predictions with and without wedge ab-
sorbers are ploted with large and small dashings, respectively.
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Figure 8.13: Evolution of vertical rms emittance in the dipole ring with wedge
absorbers. Dashed line represents the theoretical prediction.
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Figure 8.14: Evolution of longitudinal rms emittance in the dipole ring with
wedge absorbers.
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Figure 8.15: Evolution of transverse brightness in the dipole ring with wedge
absorbers.
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Figure 8.16: Initial (small, red dots ) versus final (large, black dots) horizontal
phase space distribution with wedge absorbers.
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Figure 8.17: Initial longitudinal phase space.
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Figure 8.18: Final longitudinal phase space with wedge absorbers.
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8.4 Solenoidal focused ring with adiabatic match-
ing

The need for fast and efficient cooling dictates a low 3; value and a high aver-
age RF gradient. Both conditions can be met with solenoidal focusing. The
disadvantages of the solenoidal focusing are a very large chromatic detuning
and difficulties with the injection/extraction scheme. The cell for cooling
with superimposed RF cavities and focusing solenoidal coils is so compact
that there is almost no room for injection/extraction. To inject or extract
a long drift section is needed. For the standard cooling cell, drift length of
about 1 m imposes a very severe conditions on the kicker strength. We have
to note here, that for AG rings and the zero gradient ring the injection can be
easier due to the possibility of using open C-shaped magnets together with
distributed kicker modules in the ring. For solenoidal focusing the distribu-
tion of kickers seems to be not at hand due to a strong chromatic detuning.
In the thin lens approximation the symmetric 5; in the FOF (solenoid, drift,
solenoid) cell depends on cell length. A kicker located at the beginning of the
cell has to kick the beam away by more than 2+/¢8 assuming zero dispersion
in the cell. We end up with the following condition for the kick:

/ €

where py is the Larmor phase advance per cell. This condition can be con-
verted into the formula for the ring acceptance as a function of the kicker
strength:

or 1 -
ey = LS jm“ L (8.18)

This suggests that locally a cell with a long length is needed. Then we
meet the problem of how to match a large 5; at injection/extraction section
into a cooling cell of the solenoidal lattice with very strong chromatic effects.
We propose adiabatic matching by slow variation of the intermediate cell
parameters. The phase advance per cell is kept small in order to achieve
large momentum acceptance. The bending fields in the cells are varied in
order to control value of the dispersion function. In this study we use the
sector bendings, but the tilted solenoidal coils could be used to generate the
bending field (see [53]). Firstly, we study the optics in the Larmor frame
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approximation neglecting the effect of bending magnets. Then we repeat
the calculations using eigenvalues of the 4 x 4 ring transfer matrix, taking
bendings into account. A spectrum of eigenvalues as a function of particle
momentum was studied. In general unstable regions are found in the momen-
tum band. We performed a minimization varying the solenoidal strengths
in the adiabatic matching section in order to achieve a better solution. By
a better solution we understand a spectrum of absolute values of the ring
transfer matrix eigenvalues very close to one. The solution found has an
off-momentum stability for a broad momentum band. The remaining nar-
row islands of instability should not cause serious beam loss due to strong
momentum exchange in the cooler ring in RF cavities and absorbers. In
addition instabilities in the FOFO channel develop slower than in the AG
lattice because of the permanent focusing and even transformation from the
hard edge approximation into a smooth field maps model should reduce the
effect of instability. This effect can be explained by magnetic confinement of
the solenoidal field which is extended into the larger part of the ring due to
the smooth character of the realistic fields which fill partially even the drift
sections.

Cooling
Cooling llHlll
\\\\\\\\\\\“ W OnH:'Il;# "y
~3\\\\ max 3.95T iil ,/
Cooling :.? Muon Cooling Ring 90.1 m T_::
ends or ‘; ::
-y W

4m
7 TTT TPt |
[ | [ | '
Adiabatic MatChlng |nJ ection Extraction Adlabatlc Matchi ng

Figure 8.19: The layout of the solenoidal ring. The red and blue parallel-
ograms represent solenoids with positive and negative field polarity, respec-
tively. The green polygons correspond to the sector bendings.

102



in the solenoidal ring.

Figure 8.20: The Larmor [, function

in the solenoidal ring.

Figure 8.21: Dispersions
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Figure 8.22: Off-momentum closed orbits with positive momentum deviation
seen in the horizontal plane.
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Figure 8.23: Off-momentum closed orbits with negative momentum deviation
seen in the horizontal plane.
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Figure 8.24: Off-momentum closed orbits seen in the vetical plane.
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Figure 8.25: Evolution of horizontal rms emittance in the RFOFO ring. The
theoretical predictions with and without wedge absorbers are ploted with
large and small dashings, respectively.
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Figure 8.26: Evolution of vertical rms emittance in the RFOFO ring. The
theoretical predictions with and without wedge absorbers are ploted with
large and small dashings, respectively.
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Figure 8.27: Evolution of longitudinal rms emittance in the RFOFO ring.
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Figure 8.28: Evolution of transverse brightness in the RFOFO ring.
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Figure 8.29: Initial (small, red dots ) versus final (large, black dots) horizontal
phase space distribution.
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Figure 8.31: Final longitudinal phase space.

108



Table 8.2 shows the parameters of the cooler ring. The schematic layout of
the ring is shown in Fig. 8.19. Fig. 8.20 shows the on-momentum Larmor Sy,
function. The off-momentum closed orbits are shown in Fig 8.22, Fig 8.23 and
Fig 8.24. We put RF cavities in the low-beta region. The RF packing factor
for the ring is 0.75. We simulate cooling in the ring with liquid hydrogen
absorbers and 43.57 MHz RF (h=14) at 7/4 phase. The gamma transition
factor equals 2.09. The beam passes 6 turns with a mean energy of 200 MeV.
We show the initial and final distributions of particles in the horizontal phase
space in Fig. 8.29. The evolution of the rms emittances along the cooler are
shown in Fig. 8.25, Fig. 8.26 and Fig. 8.27. The closed orbits shown above
have a strong correlation between the energy and the horizontal position in
only two places around the ring in the adiabatic matching section. These
locations, corresponding to 10 m and 80 m from the injection point are the
only places where wedge absorbers can be installed. The beta function at
these positions is relatively high, but we include wedge absorbers to minimize
blow up of the longitudinal plane. The number of wedge absorbers required
to achieve the longitudinal cooling is too low. The evolution of transverse
brightness is shown in Fig 8.28. The ring cools down transverse emittances
by factor 4 per plane. The goal of the adiabatic matching section is to achieve
a drift for the injection/extraction and matching into the low beta section in
the ring for a broad momentum range. The induction kicker was proposed
to be developed for the injection/extraction in the cooler rings [54]. The
magnetic field at flat top can be as much as 0.42 T. With the application
of adiabatic matching this value can be reduced by at least a factor 2, but
stored energy is the same assuming kicker of the same length according to
increase of beam size due to large 8 value. Obviously longer straight section
(4 m) enables to put longer kicker, than 1m studied in [54] or to put more
kicker modules. The details of the injection/extraction remain to be studied,
but the required kick might be achievable by conventional strong kickers.
With adiabatic matching we have not only reduced the kick strength but
have room for more than one kicker modulus in the 4 m long drift section.
The lack of longitudinal cooling is a serious drawback of the above design. It
can be achieved by increasing the amount of correlation between the position
and momentum deviation. This can be achieved in the design with positive
dispersion along the ring circumference.
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Long drif length 4m
Circumference 90.1 m
Reference muon kinetic energy 200 MeV
Momentum acceptance +15%
Harmonic number 14

Wedge absorber angle 0.7 rad
Mean RF gradient 1.5 MV/m
Total transverse acceptance 2 cm
Muon transmission including decay | 69.3%

Table 8.2: Parameters of the RFOFO ring.
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Chapter 9

Comparison of scenarios

We discuss muon losses due to decay in the front end and preacceleration. We
compare efficiency of scenarios parameterized by the RF frequency and the
accelerating phase during cooling and preacceleration. It has to be stressed
that the comparisons does not take into account scenarios with bunching.
Finaly, we present the design of muon front end based on bunch-to-bucket
principle.

9.1 Decay losses in the muon front end and
preacceleration

The decay losses in the front end depend on the length of the lattice assuming
beam transfer at constant energy. The length of phase rotation section and
a cooler (or number of turns in the ring cooler) depends on the RF gradient.
As assumed previously, the RF gradient is a function of frequency. It follows
that, the decay losses depend on RF frequency used in the front end. It
is interesting to study the performance as a function of RF frequency. We
want to address also a choice of RF phase in the cooler. The need of fast
cooling would suggest choosing phase near a crest at maximal acceleration,
which enables the largest amount of absorber material to be inserted into a
cooler. The high RF frequency offers also a large necessery gradient. This
requirement has to be balanced with the area of stable longitudinal phase
space, which is zero at crest and has a maximal size at zero acceleration,
which does not allow for cooling. At small phase the amount of accelera-
tion enables cooling but a long cooling time would result in too low muon
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survival. Also low frequency with its longer bucket enables to accept larger
longitudinal acceptance. There should exist an optimum in RF frequency
and phase for which the muon current at the end of cooling would be maxi-
mal. The decrease of the muon intensity at the exit of a cooling line can be
approximated by a simple exponential decay law:

2T,

N = Nye 7= (9.1)
where T, is the muon cooling time, 7y is the relativistic gamma corresponding
to mean muon beam energy, and 7, is the muon lifetime at rest equal to
2.197 ps. In the above formula we have assumed a cooling factor of €2, which
takes two cooling times. If we assume uniform distribution of particles in
the longitudinal plane and a bunch perfectly matched into a bucket we can
estimate a dependence of the muon intensity as a function of the RF phase:

_ 2Tc(ds)

Nc((ﬁs) - ABa((rbs)e Th (92)

where B,(¢s) is the bucket area as a function of synchronous phase and A
is a normalization constant. The relative muon intensity after cooling for
the uniform distribution of particles in the longitudinal plane is plotted in
Fig. 9.1 (the values are normalized to 44 MHz stationary bucket at zero
phase). We observe a strong dependence on RF phase near a zero phase and
a relatively slower fall down to zero again near the crest.

The losses in the phase rotation can be calculated in a similar way:

_Lpr
N = Noe Tw (9.3)

where the L, = ¢f7,660 m and Lpg corresponds to the length of the phase
rotation section.

The efficiency of capture and cooling has to be accompanied with efficient
acceleration. Because the final scheme of acceleration is still under develop-
ment, in our study we take into account decay losses in the preacceleration
stage from 0.2 GeV to 2 GeV kinetic energy assuming that acceleration is
done at the same frequency and phase as cooling. This simplification as-
sumes no longitudinal cooling and corresponds to preacceleration in the ring
rather than in the linac, where the phase can be adjusted more freely. The
efficiency of preacceleration can be calculated in the following way:

W()-i-m“ )— 1

N = Ny(z7—) W 9.4
O(Wfinal + my ' ( )
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Figure 9.1: Relative muon intensity after cooling in the 44 Mhz cooling sec-
tion as a function of RF phase. The uniform longitudinal muon distribution
has been assumed. The values are normalized to 44 MHz stationary bucket
at zero phase. The zero phase corresponds to no acceleration.

where Wy and W;,e correspond to the initial and final kinetic energies and
~" is given by the following equation:

, = eEqysin(¢) (9.5)

2
myc

where Eysin(¢) is the effective accelerating gradient.

9.2 Comparing scenarios

The assumption of uniform particle distribution in the longitudinal phase
space filling the entire bucket highly favours a low phase region. For the
realistic muon bunch at the exit of the decay channel created by a 4 ns long
proton beam, a relatively large bucket at low frequency and phase will be only
partially filled. We meet again a problem of matching a bunch into a bucket.
We run a series of simulations to calculate the amount of particles filling
a bucket in various scenarios. We start with scenario with phase rotation,
cooling and preacceleration performed at the same frequency. We assume
that the RF gradient depends on frequency in the same way as in the study
of the phase rotation in the chapter 7. First we apply phase rotation and
count, particles in the accelerating bucket created by the RF cavities with
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the same frequency as thoes used for the phase rotation for various phases.
We work with a fixed kinetic energy interval of muons at the exit of the
1.8 T solenoidal decay channel between 20 and 400 MeV, created from pion
distribution simulated in the target and horn studies based on MARS code
[39]. We normalize the number of accepted muons by total number of muons
in this interval. To calculate the final efficiency the capture efficiency is
multiplied by loss factors corresponding to muon passage through the phase
rotation given by equation 9.3, to exponential muon decay in the cooler given
by equation 9.1, and the preacceleration (9.5). In Fig. 9.2 we plot the relative
number of muons at the end of preacceleration for various frequencies.
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Figure 9.2: Efficiency in the front end with single RF frequency and cooling.
Every line is described by frequency in MHz.

We repeat our calculations with a second harmonic phase rotation. It
means that we phase-rotate with a harmonic two RF system with respect
to cooling. Fig. 9.3 shows the efficiency of a system consisting of a second
harmonic phase rotation, cooling and preacceleration

Then we calculate an efficiency in the scenario without phase rotation.
We count particles in the bucket at the exit of the decay channel, where we
start to cool directly. In this calculation we omit the loss factor corresponding
to muon decay in the phase rotation. Fig. 9.4 shows the achieved efficiency.

The phase rotation impoves the final efficiency with comparison to the
scenario without phase rotation, specially at low frequency. The improve-
ments are larger for the second harmonic phase rotation scenario. The ef-
ficiencies in scenarios without cooling but with the standard phase rotation

114



0.15 ¢

0125 | \\\§{\\\\\\\
> \\\\\
5]
E 0.075
’ 0.05 |
o 6
0 10 ‘ ‘ ‘ ‘ ]
0.2 0.4 0.6 0.8 1 1.2

RF phasein rad

Figure 9.3: Efficiency in the front end with second harmonic phase rotation
and cooling. Every line is described by frequency in MHz.
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Figure 9.4: Scenario with cooling but without phase rotation. Every line is
described by frequency in MHz.

and the second harmonic phase rotation are shown in Figs 9.5 and 9.6, re-
spectively. Finaly in Fig. 9.7 we plot the efficiency in the scenario without
phase rotation and cooling. Table 9.1 descibes the frequency of RF systems
used in the scenarios confronted in this chapter. Loss factors corresponding
to cooling are shown in Fig. 9.8. Higher losses can be clearly seen specially
in the low frequency range, which can be understood by the long cooling
time. Nevertheless the losses in all systems are still dominated by the accel-
eration part. It must be stressed that the efficiency factor takes into account
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Figure 9.5: Scenario without cooling and with the standard phase rotation.
Every line is described by frequency in MHz.
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Figure 9.6: Scenario without cooling and with the second harmonic phase
rotation. Every line is described by frequency in MHz

only the longitudinal phase plane, not taking into account transverse accep-
tances. It is clear that acceptance will be different for various frequencies
due to limitations in the size of RF cavities. In particular for higher frequen-
cies cooling may be necessary before acceleration. The choice of a higher
frequency is beneficial due to higher transmission in the acceleration, cool-
ing time is shorter and transverse damping offered by the ionization cooling
enable larger transverse emittances to be accepted. The muon beam would
have larger transverse 4D brightness in the presence of cooling.
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Figure 9.7: Scenario without cooling and phase rotation. Every line is de-
scribed by frequency in MHz.
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Figure 9.8: Loss factors in cooling. No transverse aperture restrictions are
taken into account. Every line is described by frequency in MHz.

We see that with phase rotation and cooling we can end up with a similar
number of muons for both the single frequency and second harmonic phase
rotation scenarios. The second harmonic phase rotation case offers relatively
short phase rotation section and larger transverse acceptances in the cooler
and accelerator doe to use of lower frequency RF cavities.
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Scenario Phase rotation | Cooling | Preacceleration
Single frequency f f f
Fig.9.2

With second harmonic 2f f f
phase rotation Fig.9.3

With cooling, without - f f
phase rotation Fig.9.4

Without cooling, with single f - f
frequency phase rotation Fig.9.5

Without cooling, with second 2f - f
harmonic phase rotation Fig.9.6

Without cooling and - - f
without phase rotation Fig.9.7

Table 9.1: Frequency (f) in the RF systems used in various scenarios.

9.3 Design example

Fig. 9.9 shows a layout of the front end based on 87.4 MHz 4 MV /m phase
rotation and 43.7 MHz 1.5 MV /m cooling as an example of the design with
the second harmonic phase rotation. The decay solenoid is matched to the
phase rotation with solenoidal focusing. The phase rotation consists of 16 0.9
m long cells. The solenoidal focusing enables a large averaged gradient to be
kept in the phase rotation and a small phase advance per cell gives momentum
acceptance. The phase rotation section is then matched adiabatically to the
cooling ring and dispersions are matched with four bending magnets. For
details concerning the cooling ring, see previous chapter. The Larmor beta
function and dispersions in the part of muon front end till injection into the
cooling ring are shown in Fig 9.10 and Fig 9.11 respectively. We assume 2
cm acceptance in the front-end, as dictated by the injection/extraction to
the cooling ring. The acceptance of the proposed scheme could be increased
by adding a linear pre-cooling section. To transform this design into a single-
frequency case the length of the phase rotation should be properly adjusted
as a function of frequency and voltage. Some details concerning the above
design can be found in Table 9.2.
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Figure 9.9: Layout of the muon front end
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Figure 9.10: Larmor beta function in the front end including the RFOFO
cooling ring.
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Figure 9.11: Dispersions in the muon front end from the target until the
injection to the RFOFO cooling ring

Length from the target till the cooling ring injection | 58.2 m
Cooling ring circumference 90.1 m
Reference muon kinetic energy 200 MeV
Momentum acceptance +30/-20%

Rf frequency in the phase rotation 87.14 MHz rad
RF frequency in the cooling ring 43.57 MHz
Mean RF gradient in the phase rotation 4 MV/m
Mean RF gradient in the cooling ring 1.5 MV/m
Total transverse acceptance 2 cm

Table 9.2: Parameters of the front end with the second harmonic phase
rotation.
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Chapter 10

Conclusions

We have studied the muon front end of the neutrino factory based on RF
phase rotation, magnetic compression and ionization cooling. We have de-
scribed techniques for maximizing the performance of the longitudinal cap-
ture of muons at the end of the decay channel into stable RF buckets using the
bunch-to-bucket principle or bunching the initial muon bunch into a string
of microbunches. The proposed solution with bunching can produce a short
muon train consistent with injection into a small cooling or accelerating ring.

Next we studied muon ionization cooling rings and in particular the
RFOFO solenoidally focused ring with an adiabatic matching section, which
seems to be very promising from the point of view of performance. The
adiabatic matching enables to keep relatively long 4 m straight section, pro-
viding space for injection /extraction and is also a very interesting to achieve a
broad momentum band acceptance. The implementation of wedge absorbers
enables longitudinal motion during cooling to be stabilized. Further research
on injection/extraction into the cooling ring is of great importance.

Then we studied the performance of the muon front end for various sce-
narios using the bunch to bucket principle, including decay losses in preac-
celeration to 2 GeV kinetic energy. However, the lack of detailed knowledge
of pion production makes the final design of the muon front end still not
possible. As an example we design a muon front end based on the second
harmonic phase rotation and the cooling ring. The bunch-to-bucket principle
allows an expensive bunching system to be avoided and a compact size to
be kept. The transformation into the single-frequency scenario with phase
rotation and cooling is straightforward. Both scenarios have similar perfor-
mance. The single frequency offers faster cooling and acceleration, while the
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second harmonic phase rotation case provides a better longitudinal capture
and larger transverse acceptances in the cooler and acceleration due to the
use of lower frequency RF system.
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Chapter 12

Appendix

Compressor line:
Q[0.4,0.704828]
SS[0.1]
Bend[1.2,0.51]
SS[0.1]
Q[0.4,-0.704828]
Sext[2.5]
Q[0.4,-0.704828]
SS[0.1]
Bend[1.2,0.37983]
SS[0.1]
Q[0.8,0.704828]
SS[0.1]
Bend[0.6,0.347356]
Sext[2.5]
Bend[0.6,0.347356]
SS[0.1]
Q[0.4,-0.704828]
Sext[2.45]
Q[0.4,-0.704828]
SS[0.1]
Bend|0.6,0.347356]
Sext[2.5]
Bend|0.6,0.347356]
SS[0.1]
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Q[0.8,0.704828]
SS[0.1]
Bend[1.2,0.37983]
SS[0.1]
Q[0.4,-0.704828]
Sext[2.5]
Q[0.4,-0.704828]
SS[0.1]
Bend[1.2,0.51]
SS[0.1]
Q[0.4,0.704828]
Q[0.4,0.704828]
SS[0.1]
Bend[1.2,-0.51]
SS[0.1]
Q[0.4,-0.704828)
Sext[-2.5]
Q[0.4,-0.704828)
SS[0.1]
Bend|[1.2,-0.37983)]
SS[0.1]
Q[0.8,0.704828)]
SS[0.1]
Bend|0.6,-0.347356]
Sext[-2.5]
Bend|0.6,-0.347356]
SS[0.1]
Q[0.4,-0.704828]
Sext[-2.45]
Q[0.4,-0.704828]
SS[0.1]
Bend|0.6,-0.347356]
Sext[-2.5]
Bend|0.6,-0.347356]
SS[0.1]
Q[0.8,0.704828]
SS[0.1]
Bend[1.2,-0.37983]
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SS[0.1]
Q[0.4,-0.704828]
Sext[-2.5]
Q[0.4,-0.704828]
SS[0.1]
Bend[1.2,-0.51]
SS[0.1]
[0.4,0.704828]

SS[!] denotes a drift with length [ in m.

Q|l, k] denotes a quadrupole with length / in m and focusing strength % in
1/m?.

Bend]l, @] denotes a sector dipole with length / in m and deflection ¢ in rad.

Lattice of half of the RFOFO ring:
SS[2]
Solenoid[1.,1.21156]
SS[0.75]

Bend[2.,0.1]

SS[0.75]
Solenoid[1,-1.289]
SS[0.5]
RF[2,43.5693,0.785398|
Bend(1.4,0.05]
RF[2,43.5693,0.785398]
SS[0.35]

Wedge[0.15, 0.5, 0.7]
Solenoid[1,1.38161]
RF[2,43.5693,0.785398]
$S[0.35]

Bend[0.8,0.1]
RF[2,43.5693,0.785398]
Wedge[0.095, 0.5, 0.7]
SS[0.255]
Solenoid[1,-1.69483]
RF[2,43.5693,0.785398]
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SS[0.3]

Bend[0.4,0.07]

SS[0.3]
RF[2,43.5693,0.785398]
Solenoid[0.5,2.66413]
SS[0.25]

Bend[0.2,0.16]
Absorber[0.116]
SS[0.134]
RF[2,43.5693,0.785398]
Solenoid[0.5,-3.33899]
SS[0.3]

SS[0.2]
RF[2,43.5693,0.785398]
Solenoid[0.5,3.95276]
SS[0.075]
Bend|[0.125,0.1122]
Bend|[0.125,0.086695]
Absorber[0.075]
Solenoid[0.5,-3.95276]
RF[2,43.5693,0.785398]
SS[0.075]
Bend|[0.125,0.086695]
Bend|[0.125,0.086695]
SS[0.075]
Solenoid[0.5,3.95276]
$5[0.075]
RF[2,43.5693,0.785398]
Bend[0.125,0.086695]
Bend[0.125,0.086695]
$5[0.075]
Solenoid[0.5,-3.95276|
SS[0.075]
Bend[0.125,0.086695]
RF[2,43.5693,0.785398]
Bend[0.125,0.086695]
$5[0.075]
Solenoid[0.5,3.95276]
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Absorber[0.075]
Bend|[0.125,0.086695]
Bend[0.125,0.086695]
RF[2,43.5693,0.785398]
$S[0.075]
Solenoid[0.5,-3.95276|
$S[0.075]
Bend[0.125,0.086695]
Bend[0.125,0.086695]
SS[0.075]
RF[2,43.5693,0.785398]
Solenoid[0.5,3.95276]
Absorber[0.075]
Bend[0.125,0.086695]
Bend[0.125,0.086695]
$S[0.075]
Solenoid[0.5,-3.95276|
RF[2,43.5693,0.785398]
$S[0.075]
Bend[0.125,0.086695]
Bend|[0.125,0.086695]
SS[0.075]
Solenoid[0.5,3.95276]
Absorber[0.075]
Bend|[0.125,0.086695]
RF[2,43.5693,0.785398]
Bend|[0.125,0.086695]
Absorber[0.075]
Solenoid[0.5,-3.95276]
$S[0.075]
Bend[0.125,0.086695]
Bend|[0.125,0.086695]
RF[2,43.5693,0.785398]
SS[0.075]
Solenoid[0.5,3.95276]
$S[0.075]
Bend[0.125,0.086695]
Bend[0.125,0.086695]
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Absorber[0.075]
RF[2,43.5693,0.785398]
Solenoid[0.5,-3.95276]
$5[0.075]
Bend[0.125,0.086695]
Bend|[0.125,0.086695]
SS[0.075]
Solenoid[0.5,3.95276]
RF[2,43.5693,0.785398]
$5[0.075]
Bend[0.125,0.086695]
Bend[0.125,0.1122]
Absorber[0.075]
Solenoid[0.5,3.95276]
SS[0.2]
RF[2,43.5693,0.785398]
SS[0.2]
Solenoid[0.5,3.95276]
Absorber[0.1]

SS[0.1]

SS[0.2]
RF[2,43.5693,0.785398]
Solenoid[0.5,-3.95276|
SS[0.2]

SS[0.2]
Solenoid[0.5,3.95276]
RF[2,43.5693,0.785398]
SS[0.2]

SS[0.2]
Solenoid[0.5,-3.95276]
SS[0.2]
RF[2,43.5693,0.785398]
Absorber[0.1]

SS[0.1]
Solenoid[0.5,3.95276]
SS[0.2]

SS[0.2]
RF[2,43.5693,0.785398]
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Solenoid[0.5,-3.95276|
SS[0.2]

SS[0.2]
Solenoid[0.5,3.95276]
RF[2,43.5693,0.785398]
Absorber[0.1]

SS[0.3]
Solenoid[0.5,-3.95276]
SS[0.2]
RF[2,43.5693,0.785398]
SS[0.2]
Solenoid[0.5,3.95276]
SS[0.2]

SS[0.2]
RF[2,43.5693,0.785398]
Solenoid[0.5,-3.95276|
Absorber[0.1]

SS[0.1]
Bend[0.125,0.0222821]
$5[0.075]
Solenoid[0.5,-3.95276|
RF[2,43.5693,0.785398]
Absorber|[0.075]
Bend|[0.125,0.0222821]
Bend|[0.125,0.0222821]
SS[0.075]
Solenoid[0.5,3.95276]
SS[0.075]
RF[2,43.5693,0.785398]
Bend[0.125,0.0222821]
Bend[0.125,0.0222821]
SS[0.075]
Solenoid[0.5,-3.95276|
$5[0.075]
Bend[0.125,0.0222821]
RF[2,43.5693,0.785398]
Bend[0.125,0.0222821]
$5[0.075]
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Solenoid[0.5,3.95276]
$5[0.075]
Bend[0.125,0.0222821]
Bend[0.125,0.0222821]
$5[0.075]
RF[2,43.5693,0.785398]
Solenoid[0.5,-3.95276|
$5[0.075]
Bend[0.125,0.0222821]
Bend[0.125,0.0222821]
Absorber[0.075]
Solenoid[0.5,3.95276]
RF[2,43.5693,0.785398]
$5[0.075]
Bend[0.125,0.0222821]
Bend|[0.125,0.0222821]
Absorber|[0.075]
Solenoid[0.5,-3.95276|
$5[0.075]
RF[2,43.5693,0.785398]
Bend|[0.125,0.0222821]
Bend|[0.125,0.0222821]
Absorber|[0.075]
Solenoid[0.5,3.95276]
SS[0.0585]
Absorber[0.0165]
RF[2,43.5693,0.785398]
Bend|[0.125,0.0222821]

RF[V, f, ¢] denotes a thin RF cavitie with field gradient V' in MV /m, fre-
quency f in MHz and phase ¢ in rad. Energy gain is calculated assuming
cavity length of 1 m.

Absorber[l] denotes liquide hydrogen absorber with length [ in m.

SS[!] denotes a drift with length / in m.

Solenoid[l, B] denotes a solenoid with length / in m and field B in T.
Bend]l, @] denotes a sector dipole with length / in m and deflection ¢ in rad.
Wedge[l, z, ¢] denotes liquide hydrogen wedge absorber with length [ in m,
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horizontal wedge angle ¢ in rad and z is a maximal distance from beam azis
in m, where the wedge angle is applied. At the larger distance absorber is
again rectangular.

Phase rotation cell ( RF cavities not included):
$5[0.225]

Solenoid[0.45,2.4208]

$5[0.225]

Matching section between the phase rotation and the cooling ring:
SS[0.425]
Solenoid[0.45,2.4208]

SS[0.225]
Bend|[0.4,0.0936439]
SS[0.525]
Solenoid[0.45,-2.4208]
$5[0.525]
Bend|0.8,0.00982522]
SS[0.725]
Solenoid[0.45,2.06095]
$S[0.625]
Bend|[1,0.0520721]
SS[0.35]
Solenoid[1,1.21757]
SS[0.35]
Bend[1,0.0650729]
SS[1.5]
Solenoid][1.,1.21028]
SS[2]
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