
NuWro architecture - Programmers Guide

Cezary Juszczak

27 Nov 2017

Basic assumptions

The input

The output

Inside the black box

Basis assumptions

1. C++ Language

2. Few external dependencies

3. Plain text human readable input

4. output in root tree format (one branch of events)

5. output events are objects (data + methods like q2(), n()

facilitating analysis).

6. Assume only moderate programing skills from Physicists

7. No particular programming style forced

8. Use classes and operator overloading to make coding pleasant

9. Natural system of units c = ~ = 1 (and MeV= 1) so c and ~
never appear in the code.

10. PDG particle numbering scheme

11. Based mainly on theoretical models *with very few fits*

12. Modular design, parts of the code should not depend on each
other if it is not necessary

The input (parameters and data files)
The input is specified by means of a text file (default params.txt).

nuwro -i myparams.txt

With simple one parameter per line syntax:

parameter1 = value_of_parameter1

paramater2 = value of multi word parameter2

Multi-line parameters need += operator to append more than one line:

parameter3 = first line of text

parameter3 += second line of text

parameter3 += third line of text

The @ sign includes other files.

@target/my_target_parameters.txt

@beam/my_beam_parameters.txt

The comment lines begin with the #

This is a comment

Command line parameters

I Any number of input parameters can be given in command line:

nuwro -p "par1=val1" -p "par2=val2" ...

I For multi-line parameters each line is entered separately

nuwro -p "par=line1" -p "par+=line2" -p "par+=line3"

I Values given in the command line override those from input file.

I One can also specify the input and output file names:

nuwro -i "myparams.txt" -o "output-file-name.root"

I Some other minor options are only by the online interface.

The params class and the par object
All the input parameters are collected in one structure.

class params

{ public:

int random_seed;

int number_of_events;

...

} par; // all the parameters

I Most of the NuWro objects are initialized based on par.

I Copy of par is included in each output event.

I The params class is generated from params.xml file.

I params.xml contains all the information about parameters:
I type
I name
I default value
I list of possible values (where applicable)
I description
I html input type (used by nuwro-online)

The output

I The output is a root file (default name eventsout.root).

I The file contains a TTree named eventsout.

I The eventsout tree has only one branch named e.

I The e branch contains objects of class event

class event {

...

params par; // copy of input parameters

flags flag; // bool cc, nc, qel, dis, res, coh, mec

int dyn; // code of dynamical channel

vector<particle> in; // incoming particle

vector<particle> temp; // DIS temporary particles (by Pythia6)

vector<particle> out; // particles before FSI

vector<particle> post; // particles after leaving nuclueus

double weight; // weight = cross section per nucleon

....

};

The event structure

The event object contains the following information

I par - copy of input parameters

I flag - boolean flags useful for output filtering:
I cc, nc – charged/neutral current events
I qel, res, dis, coh, mec - indicate dynamical channel

I four vectors of particles:
I in - two incoming particles: in[0] is neutrino, in[1] is nucleon
I temp - temporaries coming from Pythia in DIS
I out - leaving primary vertex (before FSI); out[0] is lepton
I post - leaving the nucleous (after FSI); post[0] is lepton

I dyn - integer code of the dynamical channel

I pr, nr - number of protons/neutrons in the residual nucleus

I r - position of the event inside the detector

I weight - event cross section* (used internally),

The event object has also many methods acting on it that are useful
in the analysis.

The event methods

The event object has many methods useful during the output
analysis (you can also write your own custom methods if needed):

I nu(), N0() - initial neutrino/nucleon

I E() - initial neutrino energy

I q(),q0(),qv() - fourmomentum/energy/momentum transfer

I q2() - momentum transfer squared

I s() - s - variable

I costheta() - cos theta lab

I charge(r) - total charge: 0 - initial, 1 - before fsi, 2 - after fsi

I W() - invariant mass (before FSI, all particles except the
rescattered lepton)

I n()- number of particles after primary vertex (before FSI)

I f()- number of particles leaving nucleus

I and much more (for details see event1.h header file)

The particle structure
Each particle contains the following information

I t, x, y, z - energy and momentum coefficients
I _mass - particle mass
I pdg - particle pdg code
I r - position inside the nucleus
I travelled - distance from creation
I mother - index of mother particle in the all vector
I endproc - id of process that destroyed particle

Particle methods make coding/analysis much easier:
I E(), Ek() total/kinetic energy of the particle
I m(), mass(), mass2(), charge() - mass/mass squared/charge
I p(), p4()- the momentum as a 3-vector/ the fourmomentum
I v(), v2() - velocity as a 3-vector/ velocity squared
I momentum(), momentum2() - momentum value/square
I set_mass(m) - set particle mass and adjust energy
I set_energy(E)- set energy and adjust momentum
I set_momentum(p) - set momentum vector and adjust energy
I decay (& p1, & p2) - decay particle to p1, p2
I Ek_in_frame(v) - kinetic energy in frame moving with velocity v

Three- and four- vectors

I Three vectors are representad by class vec:
I x, y, z - coordinates
I + - * / = += -= *= /= - operators
I sqr, length, dir, norm, normalize - methods
I vecprod(a,b), angle(a,b), cos(a,b) - helper functions
I many others

I Four-vectors are represented by class vect:
I x, y, z, t - coordinates
I + - * = += -= - operators
I boost(v) - boost to a frame moving with velocity v
I length() - length of the spatial part
I v() - velocity of particle with momentum (x,y,z) and energy t

I particle is a subclass of vect so you can boost particles too.

I You can also perform four-momentum calculations directly on
particles:

particle nu,lepton;

vect sum=nu+lepton, q=nu-lepton;

double t=q*q, s=sum*sum;

What it means?

I All of the goodies are exported and available during the analysis
of the output. Many plots with just one command:

treeout->Draw("out.mass()"); //masses of outgoing partiles.

treeout->Draw("n()"); // number of outgoing partiles

I number of π0 produced in deep inelastic charged current events:

treeout->Draw("nof(111)","flag.dis*flag.cc");

I momenta of outgoing π0s:

treeout->Draw("out.momentum()","out.pdg==111");

I places where the interactions took place in the cascade code:

treeout->Draw("all.r.x:all.r.y:all.r.z");

I shape of the dσ/dq2 differential cross section for DIS

treeout->Draw("q2()","flag.dis");

I More complicated scripts are also much shorter and robust due
this object oriented approach.

Inside the black box
The generator must follow the following path:

I Initialize itself based on the input parameters
I Initialize the beam (read data files if necessary)
I Initialize the target (read detector geometry if needed)
I Initialize some data tables (e.g. for pion scattering, or Spectral

Function)

I Run the test events repeating the following
I Create new event named e
I Create the beam particle and save into e.in[0]
I Create the target nucleus

I if(detector geometry) Get random place on neutrino path and
accept based on density times track length inside detector. If not
accepted replace neutrino with another one and try again. After
accepting a place, choose isotope based on material composition.

I Create nucleus of the chosen isotope

I Obtain the target nucleon and put into e.in[1]
I Choose the dynamical channel
I Run the corresponding code that fills the rest of the event and

calculates the event weight
I add the weight to the sum of channel weights.
I destroy event e

Inside the black box (continued)

I For each channel: cross section = the average event weight.

I Report channel cross sections, and calculate number of events to
be generated for each channel.

I Generate real events in temporary files – for each channel repeat
until desired number of real events is saved in a file.

I Create new event named e
I Create the beam particle and save into e.in[0]
I Create the target nucleus (the same way as for test events)
I Obtain the target nucleon and put into e.in[1]
I Run the code for current dynamical channel that fills the temp

and out vectors calculates the event weight.
I if weight exceeds the so far maximum, “delete” appropriate

number of events from current file and increase the maximum
I accept event based on its weight and maximal weight so far for

that channel.
I if accepted run the FSI code and save event to file

I destroy event e

I Copy events from temporary files to output file in random order,
skip “deleted” events from the beginning of each temporary file.

The code for dynamical Channels

The code for dynamical channels is/was usually written by physicists
not programmers. It is up to a channel developer which programming
style they use.

I Each dynamical channel code has the form of a function with the
following parameters:

double f(params &p, event& e, nucleus &t, bool nc);

I The arguments of this function are basically everything which is
needed to generate event of a given kind.

I Some global utilities like form factor library or kinematics
generators can be also be used.

I the function should:
I create outgoing particles for given incoming neutrino e.in[0] and

nucleon e.in[1], and put them to e.out.
I Calculate the differential cross section and store it to e.weight.
I return e.weight.

I The average weight must be equal to the total cross section for
any selection of the events in this channel.

The FSI code

The code for the FSI is called kaskada.

I It takes particles from e.out and propagates them through the
nuclear matter taking into account NN and πN interactions.

I In fact it can be separated from NuWro to investigate nuclear
transparency and nucleus pion interactions

I FSI never changes the weight of the event so it has no influence
on the inclusive cross section.

I It propagates nucleons and pions in small steps and
proportionally to nuclear density at given place and the
interaction cross sections performs interactions.

I all intermediate particles are logged in e.all

I particles leaving nucleus are placed in e.post

Beam interface

1. By definition the beam creates unweighted (equally probable)
particles

2. Exception is made for DIS events where biased beam is used:
I Energy profile is multiplied by energy
I but probability of accepting event is divided by neutrino energy

Projectiles (neutrinos) are produced by method shoot(bool biased)

of an abstract class beam which has five implementations in
descendant classes:

I single flavor beam (particle PDG, direction, energy histogram)
I plain text histogram originally,
I root histograms implemented by Luck Pickering

I multi flavor beam (mixed beam) is really a weighted mixture of
single flavor beams having the same direction but different
particles and energy profiles

I realistic beam: reads a list of weighted neutrinos coming from
beam simulation (different flavors, places of origin, momenta)
from files. Select neutrinos from the list with probability
proportional the weight (times energy if biased).

The target class

The role of the target class is to produce a nucleus which the
neutrino is going to scatter on. There are following implementations:

I The original single isotope target. Creates nucleus based on:
number of protons, and neutrons. Fermi momentum and binding
energy can also be given.

I Mixture is really a weighted mixture of the above.

I Full detector geometry. This is read from a root file provided by
the GEANT simulation software. Specific box shaped region of
interest can be defined.

I The generated isotope must lie on neutrino trajectory (in case of
realistic neutrino flux) and inside the region of interest.

I If neutrino fails to hit region of interest or the chosen place is not
accepted, another neutrino is asked from the beam.

I Probability of accepting a place grows with density of material
and length of the track inside the region of interest.

I Accepted place yields an isotope based on its contribution to the
mass of the material.

The nucleus class

The nucleus class provides the get_nucleon() method that creates
the initial nucleon that is hit by neutrino and is stored in e.in[1].
This nucleon is positioned according to nuclear density and has
momentum genereted according to Local Fermi Gas or Global Fermi
Gas model. For certain isotopes the Spectral function model is also
available. Other methods of this class like:

double density (double r);

void remove_nucleon (particle);

void insert_nucleon (particle);

pauli_blocking (particle);

are heavily used in the FSI code.
There are two nucleus models implemented in NuWro

I Uniform density model (ball).

I Realistic density model: density profiles implemented for most of
the existing isotopes. In some cases more than one fit is available.

Main Statistical Assumption
The events for a given dynamical channel should be generated in such
a way that

I the mean weight of events after any selection be equal to the
total cross section for analogous selection of events.

I Cross section for non biased events (wi = weight of i-th event):

σ =

n∑
i=1

wi/n

I Non biased events are accepted with probability ∼ wi.

I For DIS the events are biased with neutrino energy (on creation)
therefore we accept them with probability proportional to cross
section/energy (thus avoid the high energy tail problem with
efficiency)

I For biased events, where bi = bias = enhancement in probability:

σ =

n∑
i=1

wi

ki
/

n∑
i=1

1

ki

I Biased events are accepted with probability ∼ wi/ki.

Efficiency considerations

I The efficiency of generating reals events is the percentage of
events that get accepted and stored in file. It is equal to average
probability of accepting event:

Efficiencynonbiased =
mean(wi)

max(wi)

Efficiencybiased =
mean(wi/ki)

max(wi/ki)

I This is obvious that it might be benefitial to scale the bias of the
beam with the shape of the total cross section.

	Basic assumptions
	The input
	The output
	Inside the black box

