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o Model Independent Extraction of the Proton Radius:

o Electric: R. J. Hill and G. Paz, PRD82, 113005 (2010)
o Magnetic: Z. Epstein, G. Paz, J. Roy, Phys.Rev. D90 (2014) 074027

@ Axial mass problem:
e R J. Hill and G. Paz, PRD84, 073006 (2011)
o Model Independence in the Statistical Sense
o K. M. Graczyk, C. Juszczak, arXiv:1408.0150

K.M.G. Model Independence, Dispersion Approach and Nucleon Form-Factors



@ Model Independent Extraction of the Axial Form Factor, Axial Radius?
@ Recent M4 measurements ~ 1.3 GeV old 1.0 GeV
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@ Model Independent Extraction of the

Proton Radius?
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RICHARD J. HILL AND GIL PAZ

PHYSICAL REVIEW D 82, 113005 (2010)

TABLE 1. Proton charge radius extracted from data of Table 1 of [18] (Q% = 0.04 GeV?) in units of 1078 m, using different
functional behaviors of the form factor. Dots denote fits that do not constrain the slope to be positive.

Kmax = 1 2 3 4 5
Polynomial 83675 86773 866737 959783 1122*1%
X2 = 34.49 3251 3251 31.10 28.99
Continued fraction 88238 86‘)22
x> =3281 3251
2z expansion (no bound) 9189 868738 87918 10224192 11934132
X =36.14 3252 3248 3035 28.92
7z expansion (|a;| = 10) 91879 868728 879438 880+ 88043
X =36.14 3252 3248 3246 3245
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matrix theory — Hadron Physics

o Lorentz invariance of the theory and other symmetry principles

@ unitarity of the S-matrix
o anlyticity
o scattering amplitudes, when expressed as functions of certain kinematic variables, can
be analytically continued into the complex domain and resulting analytic functions, at
least near the physical regions, have the simplest singularity structure which is
consistent with the other general principles of the theory

@ crossing
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Analytic Function

Single-valued function of z is said to be analytic at point 2z if it has a derivative at zg
and at all points in some neighbourhood zg.
If function is not analytic at point zp we say it is singular there.

Property

All derivatives of an analytic function are analytic.
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Cauchy's theorem

If the function f(z) is analytic through the
region enclosed by the closed contour C' in
the complex z-plane then

‘% f(z)dz=0
C

The residue theorem

| \

If f(z) has no singularities other then poles
in the interior of the closed contour C,

then
j{ f(z)dz = 2miR
C

where R is the sum of residues of these
poles and the integration is taken in
anticlockwise sense.

A\

Cauchy'’s integral formula

If f(z) is analytic through the interior of
the closed contour C, then at any interior
point z of this region,

flo) = o p L&)

21 c

dz'

The Schwarz reflection principle

If f(2) is analytic in a connected region
which includes part of the real axis and
f(2) is real-valued on this part of the real
axis, then
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Laurent’s theorem

Let f(z) be analytic through the closed annular region between the two circles Cq and
C2 with common centre zg. Then at each point in this annulus

(o o]

F@= ) Anlz—z0)",

n=-—oo
with series converging uniformly in any closed region, R, lying wholly within the

annulus. Here
1 /
Ay = — f(z") - dz’
2mi [ (&' — z0)™*

v

Taylor's Theorem

If f(2) is analytic at all points interior to a circle C' centered about 2 then in any
closed region contained wholly inside C'

FE&) =3 = o)z — 20"

n=0

and the series converges uniformly.
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In non-relativistic physics the recruitment of causality follows the analyticity of the
f(E) scattering amplitude in the upper half-plane of the complex plane (in E).

see (Bjorken & Drell, 1998)
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Electromagnetic Vertex
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Electromagnetic Vertex

F(g) ~ /d4k(k2 —m2 +ie)((k+q)% — ml% +ie)((p — k)2 — M?) +ic)
We easily get,
, 1 1-z . 1
F(q)w/odz/o dy/dkm
where

A = @?zy—M? (z4y—1)2—m? (z+y)+ie = A = (¢Pazy+ie ) —M? (x+y—1)2—m?(z+y)

(1)
1 1—x 1
F(2+ie')~/dx/ dy—
! o Jo I

It is easy to see that A vanishes along ¢? > 4m ! Hence F(z) is analytic in complex
plane but without cut along Rez axis starting from z = 4dm,

In practise,
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o g% =t, for elastic scattering t < 0!

o Large distance from singularities
implies the existence of the expansion
parameter

o Conformal Mapping on unit circle

_ \/tcut =t= \/tcut —to
\/tcut 7t+\/tcut +to

2(t)

teut = 4m3r,

to :tcut(l_ \ 1+Q$naz/tcut) ’
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Notice that

lim z(¢t)=1

[t]— o0
as well as
Z(t = _ana:c) = _Z(t = 0) = Zmax

Line segment (—Q2,,.,,0) transforms to
(_Zma:m zmaac)

Expansion:

Zmax
5

0.4
03
02

01

0.0 0.5 Lo L5 2.0 25 30 Umax

G(t) = Z axz®(2)
k=0

The main result:

|ag| can be bounded by the knowledge of the Im(G) in timelike region.
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@ E-M Form Factors are real on
—q? > 0 line
o lim;_, o [G(t)] = 0

= ImGY
G%(t) = l/ dZLE(Z)
4

m z2—t
m%

i 2
Elasticscat., Q2> 0 timelike, Q2 < 0
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Form-Factors: Time-like-Region
eP) e(p)
anti-p(-h) e(p)

I x
p(h) e'(-p)
p(h)
t=(p+p’)? =(h’+h)*> 4 m,?

p(h)
t=(p-p’)? =(h*-h)2< 0
ImfFy p = p*trrfz(”

Interesting property:
NG

(125)

Pt pion momentum in the crossed (t—)channel, '] 5 — P-amplitudes for the wm — NN.
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@ Points just above the cut project onto
the upper half of the circle (with unit
radius)!

o z(z) =)

2(tcut - tO)

t(0) =t
®) e 1 — cosf

@ aj must be Real! Now

Re/ dOG(t)e™*? = ray,
0

Hence

1 s
ap = f/ dOReG (t + 10) cos(k0)
™
0

_L / dOImG(t + 40) sin(k6)
m
0
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o G(t) is analytic in almost everywhere (cut). Hence a_, = 0, for n integer, hence,
if one change k — —k then sin part is related with cos part.

agp G(to), Z(to) =0.

ag>1 = *%/ d0ImG[t(0) + 0] sin(k0)
0

2 [ at teut — b
= = “eut = 0 ImG(t) sin (k)
s tout t— tO t— tcut

K.M.G. Model Independence, Dispersion Approach and Nucleon Form-Factors



@ Norm 1
p

oo
1G lp= | Y laxl”
k=0

In the case of p = 2,
s g iy d
4
(Gl = Zmﬁ:/ d@G(z)G*(z)z/ d@\G(zﬂQ:f—\G(z)F
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1 [ at teut — to
- - / L2
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Below two nucleon production

TABLE I1. Typical bounds on the coefficient ratios ,/zw;/ug
(upper part of table) and |ay/ag| (lower part) in a vector
dominance ansatz. ¢opg is defined in Eq. (23).

2
_ a;m;,
FU=0 iMo_
! m2 — 1 —il 00=0 10= ’:;P:
2 (0.5 GeV?)
(=1 _ Bimy, c
Fi mi —t— il"”m/,‘ a9 b =1 NG 1/ G (10) 7.6 12.1
GPlL/GP (1 25 39
with a; =1, —0.12, m, =783 MeV, I' , = 8.5 MeV ) Hﬂ;’i I/ ;’- ( O)m’ >
for the isoscalar channel; and B =1, B, =37, &= dore  1OGE 12/ $O10)GE (1) 14.4 235

m, =715 MeV, l"/, = 149 MeV for the isovector chan- ||</’”'G'L””:/tb“’ﬂu'("l,;”“o) 46 6.7
nel. At I = 0, the ansatz is normalized to the 7 = 0 values

in Sec. LI A. b=1 2\t 13 18

0.78 1.3
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Below two nucleon production

D. Explicit 7777 continuum
We can be more explicit in the case of the isovector
form-factor expansion, where the leading singularities are
due to 777 continuum contributions that are in principle
constrained by measured 77 production and 77— NN
annihilation rates 16‘23,25]:

Im (;'”( ) =

(t/4 — m2)PPF (0" fL(0,  @l)
mN\/_
where F (1) is the pion form factor (normalized according
to F,(0) = 1) and f1(2) is a partial amplitude for 77 —
NN. Using that these quantities share the same phase [25],
we may substitute absolute values. Strictly speaking, this
relation holds up to the four-pion threshold, 1 = 16m2.
For the purposes of estimating coefficient bounds, we
will take the extension of (21) assuming phase equality
through the p peak as a model for the total 777 continuum
contribution.

For |F,(1)| we take an interpolation using the four 7
values close to production threshold from [26] (0.101 to
0.178 GeV?), and 43 ¢ values from [27] (0.185 to
0.94 GeV?). Values for fﬂ,(r) are taken from Table 2.4.6.1
of [28]. Evaluating (15) using (21) and the experimental
data up to t = 0.8 GeV? = 40m2 yields for the first few
m)cl‘ﬁcicnls at ¢ =1 and 1o = 0: ap = 2.1 a; = — 1.4,
L a3 = —0.9, a, = 0.2. Using |sin(k#)| = 1 in
gives |ag| = 2.0 for k = 1.

The lcddmg singularities in the isoscalar channel could
in principle be analyzed using data for the 377 continuum.
Since we do not attempt to raise the isoscalar threshold in
our analysis, we content ourselves with a simple vector
dominance model to estimate the coefficient bounds.
The first few coefficients for the isoscalar form factor using
(20) for a narrow w resonance are: ay = 1, a; = —1.2,
a, = —0.96, a3 = 04, a, = 1.3. We will compare the
above values to those extracted from electron scattering
data later. For the moment we note that a bound |a;| = 10
is conservative.
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F. Bounds on the region t = 4m?
The contribution of the physical region = 4m? to
lpGell is

dr |tew — 1o

SllbGEIR — — [ " o 016G 24)

am L=l N\ I~ lew

The cross section for e¥e™ — NN is [29]

.
2my

Gy + |(;E(r)|3). (25)

and thus for the proton electric form factor we have

~p jzifm ([—I‘ Leut r”l(ﬁl

2w a0\t
[ (1) 1 j| 26)
ao(v(t) |Gy /Gel? +2’”M/f

where oy = 4ma?/3t and v(1) = 4f1 — 4m% /1t is the nu-

cleon velocity in the center-of-mass frame. Using the data
from [30] (see also [31,32]), we can perform the integral
from 1 = 4.0 GeV? t0 9.4 GeV? assuming |G}, /Ga| = 1.7
Aty = 0and ¢ = 1, we find the result 8||G4[l} = (0.03)%,
to be added to the contribution from 7 = 4m3,. This result is
obtained by using for o(¢) the measured central value plus
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Below two nucleon production
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FIG. 4. Variation of the fitted proton charge radius as a func-

~ - . . tion of maximum Q2. Fits were performed including proton data,
FIG. 3. Variation of the fitted proton charge radius as a func- v © P P & pro

neutron data, and the 777 continuum contribution to the isovector

tion of maximum Q2. Fits of the proton data were performed ctral functi as detailed in Fits ) formed
ith Ky — 10, 6 — 1. 1 — 0, lay] = 10. Data are from [34] spectral function, as detailed in the text. Fits were performed
With Knax g » fo = 0. la| = 10. Data 54l With kpax = 8. ¢ = 1, 19 = 0, |a;| = 10.
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TABLE III. The rms charge radius extracted using electron-proton and electron-neutron scattering data, and different schemes
presented in the text. The neutron form-factor slope is constrained using (31). A cut 0%, = 0.5 GeV? is enforced. In the lower part of
the table, the bounds on ¥ ;a2 from Table II are multiplied by 4. ¢pymp and ¢opg are defined in Egs. (22) and (23).

e = 2 3 4 5 6

b =1,1=0, |a| =10 888+3 86511 888+17 882721 878720
X2 =33.67 23.65 21.80 21.13 20.47

d=1,10=0,lax|l =5 88873 865711 881710 885118 882718
X2 =33.67 23.65 21.95 21.46 21.06

¢ = dymps fo = 0, lag| = 10 8651¢ 874112 884723 879123 877122
X2 =123.26 2250 2215 21.59 21.09

$=11=0 88873 865711 88071 882714 882713
x*=33.67 23.65 2207 21.45 21.18

¢ = dops, 1o =0 9043 861119 888714 88330 881739
X2 = 6134 24.38 21.62 20.86 20.51

¢ = dopn 1o = £7(0.5 GeV?) 9123 86973 887118 881729 880129
x* = 93.69 22.54 21.05 20.32 20.32
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F4(0)

plivole(2) )
A 0-¢ /I”dlpolc B

2)

_III

—” S Fu(q). 4)
II

T

Fp(g?) =
different experiments have reported values for the so-

called axial mass parameter mi‘pme. World averages The axial-vector form factor is nm‘mzl]ich “l“/l =0 by
neutron beta decay (see Table II). Our main focus is on
determining the ¢> dependence of F,(¢?) in the physical
region of quasielastic neutrino scattering, 0> = —¢> = 0
As discussed in the introduction, an expansion at

reported by Bernard er al. [6] find comparable values
obtained from neutrino scattering results prior to 1990,
m&Pl® — 1,026 + 0.021 GeV, and from pion electro-

production, m$P® = (1.069 — 0.055) = 0.016 GeV.' The defines an “‘axial mass parameter” m, via

NOMAD Collaboration reports [5] /ni’po]e =105+ 5 5
0.02 £ 0.06 GeV. In contrast, MiniBooNE reports [3] Falgh) = FA'())[] bt + ] = my = —F,A(())_
m d"m'e = 1.35 £ 0.17 GeV, and other recent results from M Fa0)

llk K2K SciFi [1], K2K SciBar [7], and MINOS [8]
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The expansion coefficients appearing in (9) can be used
to define norms,

1/p
Il = (Staut?) " (12)
k

In particular, [[Falle = supglagl = lim,_|[F4ll, pro-
vides a bound on the maximum coefficient size. The finite-
ness of the integral appearing in the relation

I e dt Tt — 1 1/2
IIFAIl::(;f ‘ L”|.L‘A(r)|3). (13)

T Jiw! —lo N1~ lent

together with [|Fylle = ||F4ll,. establishes that a finite
upper bound exists for the coefficients. As a first approach
to estimating the actual bound || F 4[|, consider an “‘axial-
vector dominance™ ansatz, Fy~m2 /(m2 —1 =il m,,).
where m, = 1230(40) MeV and T, = 250-600 MeV
are the mass and width of the lowest lying axial-vector,
isovectormeson [11]. More precisely, let us define the form
factor via its dispersion relation with [15]

Im Fy(z + i0) N”I}"F“' 6( fow) (14)
m i0) = ———4 86— 1),
4 (r=m2)* + T2 m2, u

Using the dispersion relation (7) with (14) we find

Fate+i0)=2maLar L bl
A 7 e

EANOE [ — 11
mi —1

+“'—rzll'g[/)(lcu,)] +imt(r — lcul)], (15)
mg, Iy,

where b(1) = t = m2 + i, m,,, and N is determined by

the value of F4(0). Table I displays the values for [|F,][,

and ||F 4| computed in this ansatz. For the latter quantity

one can show that
2

a | _ 2| N

—m2
lm( - ) (16)
ap |Fa(10)] b(tew) + Vtew — 10)b(te)

.. PHYSICAL REVIEW D 84, 073006 (2011)
TABLE 1. Typical bounds on the coefficient ratios vzkaﬁ/aé
(first line of table) and |ay/ag| (second line) in an axial-vector
dominance ansatz. The range corresponds to the range
250-600 MeV for the a; width and the range 1190-1270 MeV
for the a; mass.

=0 1y = 137(1.0 GeV?)
IEAlLL/1F Ae0)] 1.5-1.7 1.9-23
F4lloo/IFa29)] 1.0-1.4 1.4-18
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PHYSICAL REVIEW D 84, 073006 (2011)

Qe (GeV?)

FIG. 2 (color online). Extracted value of m, versus Q..
Dipole model results for mj‘wle are shown by the red circles;
z expansion results with lag| = 5 are shown by the blue squares,
z expansion results with |a;| = 10 are shown by the green
diamonds.
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0.0 0.2 0.4 0.6 0.3 1.0

FIG. 3 (color online). Comparison of the axial-vector form
factor F, as extracted using the z expansion (green diamonds)
and dipole ansatz (red circles)
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Kharkev (1978) =

Daresbury (1075/1976)

DESY (1973) —e—
Frascati (1972) = e
Average !

1 1
0.6 0.8 1.0
ma(GeV)

FIG. 4 (color online).

Extraction of my, using charged-pion

electroproduction measurements, in the dipole ansatz and in
the z expansion. Data sets are as described in the text. Dipole
results are shown as the red circles, and z expansion results with

|ax] = 5 are shown as the blue squares.
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().8()f8“|]; *0.12 fm (neutrino scattering)
'y = - . (24)
0.74*212 = 0.05 fm  (electroproduction)
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<1 Gev? (tpe) @<t o2
Q*<3GeV? (ipe) — Q%<3 Gev?
-400 Q<10 GeV? (tpe) — i
[t
§ —
o -600 4
b3
=
o
£
-800 !
-1000 L L L
0 10 20 30 40
number of hidden units
FIG (Color online) Logarithm of evidence for the best

neural networks in each scheme. Solid/dashed lines corre-
spond to the analyses of the data corrected/not corrected by
the TPE effect. Points mark the best models for each analy-

proved to obtain the two-photon exchange (TPE) cor-
rection to unpolarized elastic ep cross section. However,
1

hecanse of some nhvsieal assnmntions these analvses were

K. M. Graczyk, C. Juszczak, arXiv:1408.0150

1.00 T T T T
Q?<1GeV? —
Q?<3GeV?
Q?<10GeV? ===

090 S

0 02 04 06 08 1
Q? (GeV?)

FIG. (Color online) The form factor G
1/(1 + Q*/0.71GeV?)?). Red, blue and ma
respond to the best models in the analysis with data limited
by Q2o = 1, 3 and 10 GeV? respectively. The areas colored
with magenta, blue and red denote 1o uncertainty due to the
change in the fit parameters (calculated within the Hessian
approximation). The gray lines show models which are best
for neural networks with definite number of hidden units, but

are not globally best
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Q?<10 GeV? Q <3 Gev2 Q%<1 GeV?
1.00 . T

0.80 1
= 060 F B
£
a
= 040 B
0.20 | B
Qutors (GeVA[ ok, (fm) [ +p () [H
0.00 1 0.879 £ 0.007]0.899 & 0.003) 1
090 - i 3 0.883 % 0.007|0.899 % 0.003| 4
10 0.953 % 0.065|0.897 £ 0.005| 6
TABLE [: The values of the proton radii obtained with 1o
— uncertainty due to variation in the parameter space. H is the
£ number of hidden units of the best model.
o 085 B
o
Quiors (GeV?) rhy (fm) rp (fm)
tpe 1 0.8792 % 0.0006]0.8989 = 0.0001
0.80 ° 3 0.8828 % 0.0063|0.8988 = 0.0003
: 1 L2 1 10 0.9205 £ 0.0606|0.8968 %+ 0.0029
-1000 -900 -800 -700 -600 -500 -400

In(evidence) TABLE II: The expected value (according to evidence proba-
bility distribution) of the proton radii with systematic uncer-
tainty due to the choice of the parametrization (given by the
FIG. 4: (Color online) The proton radii corresponding to the variance)
models which are the best within particular data selection and
neural network scheme. The results for the data corrected by
the TPE are marked with black A, 0, and O for Q205 = 1.
3 and 10 GeV? respectively. The results for the uncorrected
data are marked with blue V and ¢ for Q% ¢ = 1 and 3
GeV? respectively. The filled points mark the best result for
cach case. The three leftmost red points are the best results
according to the minimum of the error function. For clarity
ate h: i

as been chanoed,
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