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• What is a spectral function (SF)? 
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• Comparison with Benhar’s SF
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Hartree-Fock approximation

Statical potential 
 (does not depend on the energy)  

that describes the averaged interaction 
between the nucleons.
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Fig. 10.1 Part a) shows the diagrammatic representation of the Dyson equation in the
HF approximation. In part b) all diagrams up to second order contributing to the HF
(irreducible) self-energy are displayed.

but rather the solution of the corresponding Dyson equation,

GHF(a, (3; E) = G^{a,P; E) + £ G<°>(a, T, E)ZHFh, 6)GHF(S, 0; E).

(10.5)
Here the energy argument of T,HF has been dropped; this is appropriate,
since inspection of Eq. (10.4) clearly shows that the HF self-energy has
no ^-dependence. The diagrammatic equivalent of Eq. (10.5) is shown
in Fig. 10.la). It is evident that a particular, infinite class of self-energy
diagrams is retained in the HF self-energy, of which the lowest-order ones
are shown in Fig. 10.16). We emphasize that the symmetrized version of
the diagram method is employed, so that both a direct and an exchange
contribution are implied for each interaction V.

Further analysis of the HF self-energy Y,HF in Eq. (10.4) requires the
energy-dependence of the (as yet unknown) HF propagator, but we may
assume that it has the same simple pole structure as the exact propagator,
and write its Lehmann representation (see Sec. 7.2) as

GHF(a,(3;E) = Y-^4? + V -^Ji . (i0.6)

The (approximate) z amplitudes are defined in analogy to Eq. (9.39) by

7n- _ /rt/W-ll \-$>N\ MO 7)

Kind of diagrams taken into account in the Hartree-Fock 
approximation (1st order correction)

Green function  
(propagator)

This self-energy changes  
the dispersion relation of i-th 

particle

G(E, p) =
1

E � p2

2M � ⌃(p)
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7.4 Potentials

where n(t) denotes the number of test particles at time t, and rj(t) and pj(t) are the
coordinates and the four-momenta of test particle j at time t. As the phase-space
density changes in time due to both, collisions and the Vlasov dynamics, also the
number of test particles changes throughout the simulation: in the collision term, test
particles are deleted and new ones are created. At t = 0 we start with n(0) = N · A
test particles where A is the number of physical particles and N is the number of
ensembles (test particles per physical particle).

Combining the time derivative of Eq. (7.13) and the one obtained from Eq. (7.11),
we find the equations of motion

∂rj

∂t
=

(
1 − ∂H

∂p0

)−1 ∂H

∂p
, (7.14)

∂pj

∂t
= −

(
1 − ∂H

∂p0

)−1 ∂H

∂r
, (7.15)

∂p0
j

∂t
=

(
1 − ∂H

∂p0

)−1 ∂H

∂t
. (7.16)

Within the so-called off-shell potential ansatz — discussed in detail in Section 7.8 —
the Hamiltonian depends on p0. Only then, the term ∂H/∂p0 remains. If ∂H/∂p0 = 0,
Eqs. (7.14) and (7.15) are simply the Hamilton equations of motion which describe
the propagation of the test particles between the collisions. Energy conservation is
enforced by Eq. (7.16) when ∂p0

j /∂t = 0 if ∂H/∂t = 0. Numerically, the Hamilton
equations of motion are solved with a predictor-corrector algorithm.

7.4 Potentials

Besides medium modifications like Fermi motion and Pauli blocking (cf. Section 7.5)
we include hadronic mean-field potentials and also a Coulomb potential.

7.4.1 Hadronic potentials

The relativistic single-particle Hamiltonian given by Eq. (7.5) includes a mean-field
potential Vi for a particle of species i. The nucleon mean-field potential VN, which
describes many-body interactions of the nucleons, can be parametrized according to
Welke et al. [WPK+88] as a sum of a Skyrme term depending only on density and a
momentum-dependent contribution of Yukawa-type interaction

VN(p, r) = A
ρ(r)
ρ0

+ B

(
ρ(r)
ρ0

)τ

+
2C

ρ0

∫
d3p′

(2π)3

g
(

fn(r, p ′) + fp(r, p ′)
)

1 +
(

p−p ′

Λ

)2 , (7.17)

85
(potential for the ground state used in GiBUU)
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FIG. 1. Diagrams entering electron scattering with nuclei leading to pion production: (a) yN~~N nucleon pole term, (b) Kroll-
Ruderman term, (c) pion pole term, and (d) symbolic representation of all these terms involving the yN~vrN scattering matrix
represented by the dashed circle.

cross section. In Eq. (3) we have used the optical
theorem and the fact that k, =kM/&s, assuming the
nucleons of the Fermi sea to be at rest.
Equation (3) puts an important constraint on X, pro-

viding a model-independent limit which is easy to check.
Most models used in the literature violate this theorem,
at some point, because of the approximate NN potentials
used or because of the approximations used in the solu-
tion of the many-body problem. The work of Refs. [2,3]
is one example. Indeed, relying upon the central part of
the NN interaction and neglecting tensor forces, as one
increases the nucleon energy the NN cross section is pro-
gressively underestimated [7].
The test of Eq. (3) is very useful since it allows us to

have an idea of the accuracy expected from a theory or
the kinematical regions where the results are unreliable.
There is another point worth mentioning. As we see,

in Eq. (3) we have the total NN cross section. At nucleon
momenta beyond 1 GeV/c, the pion production inelastic
channels open up and the NN cross section contains a fair
amount of inelastic cross section. Pion production can
also proceed with only one nucleon, provided we have
off-shell nucleon energies, above the pion mass. While
this channel is considered in evaluations of the b, self-
energy [8], it is usually neglected in evaluations of the nu-
cleon self-energy which rely upon static NN potentials.
Equation (3) certainly requires the inclusion of this chan-
nel as soon as the energy allows it. However, one must be
aware that for some practical applications the inclusion
of this channel might be relatively irrelevant. Indeed, for
pion scattering, the region of energies where pion produc-
tion is allowed is dominated by the 5 resonance and the

I

nucleon pole terms are very small. One might think that
in electronuclear processes, where one can single out the
longitudinal response function and exclude the 5 chan-
nel, the m production channel will be important. While
this is certainly true, the question is that pion excitation
by virtual photons not only proceeds through N ~Nm or
NN~NN~ steps, but there are direct yN~mN terms,
such as the pion pole and Kroll-Ruderman terms, which
are dominant at low pion energies and which cannot be
cast in terms of the nucleon self-energy. This is visual-
ized in Fig. 1. Instead of including pion production in
the nucleon self-energy, it is more practical to look glo-
bally at the pion electroproduction process by means of
the diagram of Fig. 1(d), where the dashed circle stands
for a11 terms contributing to yN~mN. This example
shows us that the input in the nucleon self-energy has to
be looked at in the context of the physical process that
one wants to study. With this in mind, we shall also ex-
clude the pion production channels from our model and
remember that we have to deal explicitly with this degree
of freedom in whichever process we wish to apply the
model.

III. MODEL FOR THE NUCLEON SELF-ENERGY

The diagrammatic meaning of Eq. (1) is given in Fig. 2,
where the Lippmann-Schwinger series leading to the NN
t matrix is shown explicitly. Figure 2(a) does not contrib-
ute to the imaginary part of X, while all the others do. In
order to evaluate it, we concentrate on Fig. 2(b). The
self-energy for this diagram is given by

4

(2m ) k —q —c(k—q)+ i e k —q —c(k—q)—ie

+ +

a} b) c) d}

FIG. 2. Ladder sum for the nucleon self-energy. The dashed lines indicate a NN potential.

We want to make a better approximation than HF…

…we have to add more diagrams.
(F. de Cordoba, E. Oset, PRC 46, 5)
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!
• From the computational point of view it is much 

easier to calculate the imaginary part of this 
diagram (by Cutkosky cut) 
!
!
!
!
!
!

• V(q) potential -> elastic NN scattering data
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ply replacing V(q) in Eq. (6) by the t matrix. Analytical-
ly, this is obtained by means of the relationship

Im( V+ VGV+ VGVGV+ }

=(V+ VGV+ VGVGV+ . )*

X ImG( V+ VGV+ VGVGV+ ), (7)

FIG. 6. Series of Fig. 2 showing the sources of ImX when the
particles cut by the dotted lines are placed on shell in the in-
teg rations.

grams in arrows we generate the t matrix in the upper
part of the cut, while summing over columns we generate
the t matrix in the lower part of the cut. Hence the sum
of all these diagrams is easily taken into account by sim-

where 6 is the only source of the imaginary part, which
in our case corresponds to the Lindhard function. The
only novelty with respect to the conclusion from the di-
agrammatic expansion is that one of the T matrices ap-
pears complex conjugate. This is indeed one of the
prescriptions of the Cutkosky rules which have its roots
in the optical theorem [10].
Hence we obtain for the imaginary part of the nucleon

self-energy the result

ImX(k)= f 3 1—n(k —q} 8(k —E(k—q})—n(k —q)8(e(k —q}—k } .
(2n )

XlmU~(q)g g ~t~

where we have also included the sum and average of
~
t

~

over final and initial polarizations. One of the initial nu-
cleon states is the hole state of the Lindhard function,

and we should sum, not average, over its spin. The factor
of 2 of spin is included in U~ and hence we average

~
t

~
.

So far, the derivation is rigorous. The t matrix corre-
sponds to the diagrammatic series implicit in Fig. 2, with
the nucleon propagators containing both particle and
hole parts, as the curly brackets of Eq. (4). This leads to
a t matrix different than the free one, which is the Gal-
itskii r matrix [11,12]. In most studies in the literature,
only the particle part of the propagator is taken and one
obtains then the Bethe-Goldstone G matrix. However,
the approach of Refs. [2,3] relies upon the Galitskii equa-
tion. One of our approximations is to take t of Eq. (g) as
the free NN t matrix. Another one is to substitute ~t ~ by
its average over angles relating it to the NN cross section
by means of the relationship, based on Eq. (2),

~s 4arf X ~ ~ 4 ~elas p ~elas &M M
(9)

FICz. 7. Reordering of the series of Fig. 6 leading to the last
diagram of the figure where the serrated line indicates the medi-
um t matrix.

where O.,~„is the elastic NN cross section averaged over
isospin, since U~(q) also contains a factor of 2 for iso-
spin. The last step in Eq. (9) is made for consistency with
other nonrelativistic approximations made in the
Lindhard function, etc. At the heart of the replacement
of the Galitskii t matrix by the free t matrix is the fact
that as p~0 they coincide and that by including the con-
tribution of holes the Galitskii equation does not restrict
the phase space so much as the Bethe-Goldstone equation
and leads to closer results to the free t matrix than the
Bethe-Goldstone G matrix. The density modifications to
this formula will come in our approach from the medium
polarization, which at low energies plays a very impor-
tant role.
We have taken the results for 0.,&„from the particle

data tables, and we take it to be dependent on the Man-
delstam variable s.
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Polarization effects

• Use the dispersion relation to obtain the real part:
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At this point we would like to raise a word of caution
not to use Eq. (4), for the second-order diagram, to evalu-
ate the real part of the nucleon self-energy by replacing
V(q) by the r matrix, as we have done to calculate ImX.
This would lead to double counting since two interaction
lines on the upper part of the diagram and one in the
lower will be counted twice when we consider also one in-
teraction line in the upper part and two in the lower.
There was no double counting in the imaginary part be-
cause the cut giving rise to ImX could be placed between
any two interaction lines (see Figs. 6 and 7).
It is instructive to see that our approximation satisfies

exactly the low-density theorem. Indeed, as p~0, we
can take n(n —q) =0 in Eq. (8), and by means of the use-
ful approximation

e(q')lm U„(q)= —~p&(q' —q'/2M )
p~o

(10)

and the change of variable q=q'+k/2, we perform im-
mediately the integral in Eq. (8) with the result given in
Eq. (3) for on-shell nucleons (k =k /2M). The only
difference is that we obtain 0„„instead of o.„„because,
as discussed above we do not attempt to incorporate the
pion production channels in our approach.
Equation (8) gives us ImX(k) also for the case where

the original nucleon is off shell (k Ak /2M). We have
to give a prescription on how to evaluate t when the ini-
tial nucleon is off shell. This requires the knowledge of
the dynamics of the NN interaction. If we think in terms
of meson-exchange models for the interaction, we would
have a form factor F(q) in each of the four vertices in the
diagram of Fig. 2(b). In an off-shell situation, q would
change with respect to the on-shell value q,„,and by mul-
tiplying cr by [F(q)/F(q, „)],we would account for the
off-shell effects due to the vertices. The propagators
would also change. However, it is easy to prove that if
we assume the hole line in the Lindhard function to have
as an average a momentum @2=(m,0), we can also make
an average for the longitudinal component of q along the
k direction which provides qL =k/2. Then we find the
average value of q =Mk and q =q /2M irrespective of
whether (k, k) is on or off shell. We take q =—Mk in
line with the other nonrelativistic approximations. Then
our prescription is the following: For any oF-shell situa-
tion (k, k), we take the cross section 0 corresponding to
the on-shell situation (k =k /2M, k ) and multiply it by
the factor [F(q)/F(q, „)]. We take F(q) of the mono-
pole type F(q) ~ 1/(A —q ) with A = 1300MeV.
The scheme which we have developed has as a main

virtue to satisfy the low-density theorem, but it automati-
cally provides an analytical extrapolation of these results
to finite densities, incorporating Pauli blocking effects
through the Lindhard function and the two terms of Eq.
(8). It also provides an off-shell extrapolation, through
the explicit dependence of Eq. (8) on k and k. This
dependence comes mostly from ImU(q) and to a much
lesser extent from the forxn-factor correction. It has also
the appropriate analytical properties: ImX(k) vanishes at
k =a~ =k~/2M and is negative for k & z~ and positive
for k (e~, as demanded by general theorems [14]. How-

FIG. 8. Self-energy diagram including the effects of the medi-
um polarization.

ever, as shown in Ref. [9], for densities p=po pp/2 (po
normal nuclear matter density), and k =a++85 MeV,
the present scheme provides ImX= —10.4 and —7.2
MeV versus the value —6.5 MeV for both po/2 provided
by the microscopic calculations of Ref. [4]. This reflects
the fact that at higher densities there are quenching
mechanisms beyond Pauli blocking which further reduce
the results from the scheme exposed above.
It is interesting to recall the basic ingredients incor-

porated in the hypernetted chain approach of Ref. [4].
From the diagrammatic point of view, it incorporates
ladder sums, which we have already summed in the t ma-
trix, and polarization sums obtained by allowing the in-
teraction to excite ph components in an iterative way.
This is shown diagrammatically in Fig. 8. We wish to in-
clude these effects in our scheme, and we do this in the
next section.

IV. POLARIZATION EFFECTS

In order to include the polarization effects of Fig. 8, we
must perform the sum of the geometric series implicit in
the figure and there we need the ph interaction. Here
again we adopt a phenomenological approach. At ener-
gies of the nucleon k &a~+50 MeV, the value of q
exceeds 200 MeV/c. These momenta are already bigger
than the pion mass and make the tensor force of the NN
interaction appreciable. Our position here is that at these
energies the ph interaction is dominated by the spin-
isospin effective interaction, and we shall use this one for
the iteration of the ph excitation in Fig. 8. This interac-
tion is given by

V, ;(q)= V&(q)q; qj + V, ( )(q5; q; q, ) cr, o ~ r—, (11.)

with

2 2

m '„(qo)'—q' —m '
(12)

m' (q )'—q' —m'

where F; (q) is the meson-NN form factor which we take
to be of the monopole type F;(q)=(A, —m; )/(A; —q ),
with A = 1300MeV, A = 1400 MeV [15]. C is the ratio

Re⌃(!, k) = � 1

⇡
P
Z 1

!F

d!0 Im⌃(!0, k)

! � !0 +
1

⇡
P
Z !F

�1
d!0 Im⌃(!0, k)

! � !0



Spectral function

G(E, p) =

Z µ

�1
d!

Sh(!, p)

E � ! � i✏
+

Z 1

µ
d!

Sp(!, p)

E � ! + i✏

E < µ Sh(E, k) =
1

⇡
ImG(E, k)

E > µ Sp(E, k) = � 1

⇡
ImG(E, k)

Green function of an interacting nucleon in the nuclear matter:

(also density dependant)

Green function in Lehmann representation:

Fermi level 
in the interacting system

G(E, p) =
1

E � p2

2M � ⌃(E, p)



Sh/p(E, k) = ± 1

⇡

Im⌃(E, p)

[E � p2/2M � Re⌃(E, p)]2 + [Im⌃(E, p)]2
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TABLE I. Nucleon cross sections. PL, nucleon momentum in laboratory system in GeV.

PL &0.8 GeV 0.8&PL &2 GeV

Opp, onn

(fm '

&pn, &np

(fm )

2.35+ 100(0.7—PL )

3.3+19.6(0.95—PL )"

[125/(PL+50)]—0.4(1.3 PL—)'

3.1/+PL

—ReX(co, k) =0 .g2

2M
The inverse ofM /M is the quasiparticle strength

—I
BReX(co,k)

Bco

(28)

(29)

VII. RESULTS AND DISCUSSION

For the NN cross section, we take the parametrization
of Table I [18]. On the other hand, for the Mandelstam
variables, we take

2
k2 3 kF'

s=(p, +p~) = 2M+ +-
2M 5 2M

—k2 (30)

where we have made an average over the Fermi sea.
In Fig. 10 we show the results for ImX(co, k) for

k =k(co), given by Eq. (28), as a function of co—p. We
represent the results for two densities p=po and p=po/2.

We see that below co—p=80 MeV, ImX(co, k), for
p =po/2 is bigger than for p =po and above that energy
the opposite occurs. This shows the drastic e6'ects of the
polarization, together with Pauli blocking, which are
more apparent at low energies. The results have been ob-
tained with a value g'=0. 7 for the Landau-Migdal pa-
rameter. The results in Fig. 10 agree remarkably well in
magnitude with those of Ref. [4] for both densities and
the range of energies in the figure. This gives us
confidence about the accuracy of the numerical results of
the present approach for the imaginary part of X.
In Fig. 11 we show the results for M /M as a function

of k for p=po. The results are similar to those of most
dynamical approaches [1,2] and produce a peak close to
the Fermi moxnentum with values bigger than 1.
In Fig. 12 we show the results for Mz/M at p=po.

The results are similar in shape and size to those of other
approaches [1,2]. The smoothness of the curve is the
most distinctive feature of this magnitude. Finally, in
Fig. 13, we show the results for M*/M at p=po. We get
a peak around the Fermi momentum with values around
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FIG. 10. ImX(co, k(co) ) as a function of co—p for two nuclear densities.

(F. de Cordoba, E. Oset, PRC 46, 5)



Lepton-nucleus interaction



Impulse Approximation: 
only one interacting 

nucleon

nucleon “feels” 
the environment both 

before and after interaction

Lepton-nucleus interaction



Our aim: use the SF to 
calculate the xsection
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Our aim: use the SF to 
calculate the xsection

Putting the cut lines on-shell 
= 

calculating the imaginary part of the diagram

l

v

W

n

p



Our aim: use the SF to 
calculate the xsection

n

p

This is a loop of 2 nucleons (Lindhard function). Its imaginary 
part will appear in the xsection formula. 

!
Only this part depends on the nuclear effects…

UN (q, ⇢) =

Z
d4p

(2⇡)4
G(p, ⇢)G(p+ q, ⇢)



Cross section is proportional to the imaginary part of the 
Lindhard function. Eg. in the case of the LFG:

W

µ⌫(q0, ~q) =� cos

2
✓c

M

2

Z 1

0
drr

2

⇥(q0)

Z
d

3
p

(2⇡)3
M

Ep

M

Ep+q

⇥(kF � p)⇥(p+ q � kF )(�⇡)�(q0 + Ep � Ep+q)

A

µ⌫(p, q)

Our aim: use the SF to 
calculate the xsection



Cross section is proportional to the imaginary part of the 
Lindhard function. Eg. in the case of the LFG:

W

µ⌫(q0, ~q) =� cos

2
✓c

M

2

Z 1

0
drr

2

⇥(q0)

Z
d

3
p

(2⇡)3
F(p, q)Aµ⌫(p, q)

ImUN (q)

Our aim: use the SF to 
calculate the xsection



Non-free Lindhard function

G(Ep+q, p+ q) =

Z µ

�1
d!

Sh(!, p+ q)

Ep+q � ! � i✏
+

Z 1

µ
d!

Sp(!, p+ q)

Ep+q � ! + i✏

G(Ep, p) =

Z µ

�1
d!

Sh(!, p)

Ep � ! � i✏
+

Z 1

µ
d!

Sp(!, p)

Ep � ! + i✏

U1(q) =

Z
d4p

(2⇡)4

Z 1

µ
d!0

Z µ

�1
d!

Sh(!, p)

p0 � ! � i✏

Sp(!0, p+ q)

p0 + q0 � !0 + i✏

UN (q, ⇢) =

Z
d4p

(2⇡)4
G(p, ⇢)G(p+ q, ⇢)



U1(q) =

Z
d4p

(2⇡)4

Z 1

µ
d!0

Z µ

�1
d!

Sh(!, p)

p0 � ! � i✏

Sp(!0, p+ q)

p0 + q0 � !0 + i✏

U1(q) =

Z
d3p

(2⇡)3

Z 1

µ
d!0

Z µ

�1
d!

Sh(!, p)Sp(!0, p+ q)

!0 � q0 � ! � i✏

Integration over residua gives: 

becomes Delta function 
when we want to compute 

the Im part

ImU1(q) =

Z
d3p

(2⇡)2

Z µ

µ�q0
d!Sh(!, p)Sp(! + q0, p+ q)



• ImU(q) gives us the 
kinematical region where 
xsec is nonzero 

• It is more spread and lower in 
the case of the SF 
(comparing to the LFG) 

• QE peak is shifted





Benhar vs Nieves model

ImŪSF (q, ⇢) = �⇥(q0)

4⇡2

Z
d3p

Z µ

�1
d!Sh(!, ~p )�(q

0 + ! � Ep+q)⇥(Ep+q � µ)

ImŪSF (q, ⇢) = �⇥(q0)

4⇡2

Z
d3p

Z µ

µ�q0
d!Sh(!, ~p )Sp(q

0 + !, ~p+ ~q )

What happens if we neglect the particle spectral function:



Inclusion of the FSI

F (!) =
1

⇡

ImV

(! � ReV )2 + ImV 2

ImŪSF�Benhar(q, ⇢) = �⇥(q0)

4⇡2

Z
d3p

Z µ

�1
d!Sh(!, ~p )⇥(Ep+q � µ)F (q0 + ! � Ep+q)

Folding function plays the same role as a particle SF in Nieves 
model

ImŪSF (q, ⇢) = �⇥(q0)

4⇡2

Z
d3p

Z µ

µ�q0
d!Sh(!, ~p )Sp(q

0 + !, ~p+ ~q )

We include the folding function which is 
built out of the optical potential V  

ImŪSF�Benhar(q, ⇢) = �⇥(q0)

4⇡2

Z
d3p

Z µ

�1
d!

Z
d!0Sh(!, ~p )

�(!0 + ! � Ep+q)⇥(Ep+q � µ)F (q0 � !0)



Scaling function: 
comparison

q=300 MeV q=380 MeV



Differences between two 
approaches

• Nieves: LDA prescription (SF less realistic than in 
the shell-model) 

• Nieves: nonrelativistic model which (because of the 
particle SF) cannot be used for high momentum 
transfer 

• Benhar: hole and particle SF are different objects. 
Optical potential is used in order to make the 
calculation relativistic



Outlook
• The general way in which SF works on the xsec: 

quenching and shifting of the QE peak 

• Lindhard function - a natural object to look at when 
considering the nuclear effects 

• A big problem of this calculation: it is nonrelativistic 

• It might be interesting to compare Benhar and Oset 
formalisms in more detail



Thank you


